04.12.2017

PostHeaderIcon 1.NASA хочет наделить свои космические аппараты ИИ.2.Несколько способов гуглить как профессионал.3.Синтетическая радужка.4.Ученые определили локации…5.Нейтрино.6.Электромобили должны заряжаться на ходу.

NASA хочет наделить свои космические аппараты искусственным интеллектом.

Оснащение искусственным интеллектом аппаратов, которые человечество отправляет на исследование космических просторов, имеет вполне логичный смысл, так как возможность самостоятельно принимать решения без необходимости дожидаться дальнейших инструкций с Земли может существенно ускорить выполнение запланированных миссий, одновременно повысив эффективность. Поэтому неудивительно, что аэрокосмическое агентство NASA решило подумать, как же именно можно все это реализовать. 
С каждым десятилетием запускается все больше и больше космических зондов, и было бы неплохо, если бы некоторые из них могли работать полностью автономно, самостоятельно принимая решения при занятии наукой после достижения своих точек назначения. Вот здесь как раз и пришелся бы очень кстати искусственный интеллект. 
Стив Чен и Кири Варгстаф из Лаборатории реактивного движения NASA считают, что машины, обладающие искусственным интеллектом, могли бы обучаться прямо на ходу, адаптируясь к тем или иным ситуациями и встретившись с теми явлениями, которые недоступны нашим нынешним и даже самым мощным телескопам. 
«Наделенные возможностью к самостоятельному принятию решений роботизированные космические аппараты смогут гораздо эффективнее как проводить традиционные научные наблюдения, так и решать невозможные в нынешних условиях задачи, как, например, мгновенно реагировать на кратковременные выбросы пара и другого материала с поверхности комет, находящихся на расстоянии многих миллионов километров от Земли», — говорят исследователи. 
Одним из очевидных преимуществ использования искусственного интеллекта будет являться его возможность определения различий между штормовыми и обычными погодными условиями на далеких экзопланетах, что сделает получаемые данные об удаленных мирах гораздо полезнее для ученых на Земле. 
Так же как Google использует ИИ для определения кошечек и собачек на фотографиях, так же и космический аппарат, оснащенный искусственным интеллектом, сможет разглядеть, например, различия между снегом и льдом, между текучими и застойными водами, что сделает получаемые научные данные существенно более развернутыми и, соответственно, более ценными. 
По предположениям ученых, оснащенные ИИ космические зонды смогут достичь Альфы Центавра примерно через 4,24 светового года. При таких расстояниях, за то время, что отправленный одной из сторон коммуникационный сигнал будет достигать своего адресата, сменится не одно поколение ученых. Наделение же зонда собственным разумом определенно позволит ускорить процесс принятия нужных решений. 
Специалисты уверены, что новое поколение роботов, наделенных искусственным интеллектом, сможет самостоятельно определять «объекты интереса», непредвиденные события, собирать и анализировать данные, адаптировать при необходимости изначально заложенную задачу под изменяющиеся условия. А если такие космические зонды будут еще работать сообща, то польза от использования ИИ станет еще более заметной, ведь в таком случае искусственные разумы смогут вместе приниматься за решения сложных задач. 
Что радует, примеры интеграции этой автономности в космосе мы можем наблюдать уже сегодня. Марсоход «Кьюриосити» на днях получил обновление программного обеспечения, которое позволяет установленной на его борту камере ChemCam самостоятельно выбирать интересные цели для наблюдения и анализа. 
Получив некоторую долю самостоятельности, он стал эффективнее. Теперь вместо ожидания очередных инструкций из Центра управления с Земли «Кьюриосити» может самостоятельно выбирать важные цели для исследования и способен собирать гораздо больше интересной для науки информации, сообщают исследователи.
Но это лишь первый шаг на пути автономных космических исследований. Как отмечают Чен и Вагстафф, новый марсоход, который будет отправлен на Красную планету в 2020 году, сможет автоматически корректировать процесс сбора научной информации с учетом всех имеющихся ресурсов. 
Со временем искусственный интеллект будет становиться все важнее и важнее для космических путешествий, говорят ученые. Его важная роль будет заключаться не только в помощи людям на Земле. Немаловажной будет и его роль в том, как человечество будет исследовать и осваивать остальную часть Вселенной. Источник: hi-news.ru

__________________________________________________________________________________________________

Несколько способов гуглить как профессионал. Экономия времени и удобство. 

1. Исключение из Google поиска. 
Чтобы исключить из поисковой выдачи какое либо слово, фразу, символ и т.п., достаточно перед ним поставить знак «-» (минус), и оно не появится в результатах поиска. 
Для примера, я ввёл в строку поиска следующую фразу: «бесплатный хостинг – ru» и в поисковой выдаче нет ни одного .ru сайта, кроме оплаченных рекламных объявлений. 
2. Поиск по синонимам. 
Используйте символ «~» для поиска схожих слов к выбранному. Например в результате выражения: «~лучшие фильмы -лучшие» вы увидите все ссылки на страницы, содержащие синонимы слова «лучшие», но ни одно из них не будет содержать этого слова. 
3. Неопределённый поиск. 
На тот случай, если вы не определились с конкретным ключевым словом для поиска, поможет оператор «*». 
Например фраза «лучший редактор * изображений» подберёт лучшие редакторы для всех типов изображений, будь то цифровые, растровые, векторные и т.д. 
4. Поиск на выбор из вариантовэ 
Используя оператор «|», можно осуществить Google поиск по нескольким сочетаниям фраз, заменяя несколько слов в различных местах. 
Например, введём фразу «купить чехол | ручку» выдаст нам страницы, содержащие либо «купить чехол», либо «купить ручку». 
5. Значение слова.
Чтобы узнать значение того или иного слова, достаточно ввести в поисковую строку «define:» и после двоеточия искомую фразу. 
6. Точное совпадение. 
Для нахождения точного совпадения поисковой выдачи с запросом достаточно заключить ключевики в кавычки. 
7. Поиск по определённому сайту. 
Чтобы осуществить поиск ключевых слов только по одному сайту, достаточно прибавить к искомой фразе следующий синтаксис – «site:». 
8. Обратные ссылки. 
Чтобы узнать расположение ссылок на интересующий сайт, достаточно ввести следующий синтаксис: «links:» и далее адрес интересующего сайта. 
9. Конвертер величин. 
Поисковая система Google также умеет конвертировать величины по запросу пользователя. 
Например, нам нужно узнать, сколько составляет 1 кг в фунтах. Набираем следующий запрос: «1 кг в фунтах». 
10. Конвертер валют. 
Для того, чтобы узнать курс валют по официальному курсу, набираем следующий поисковой запрос: «1 [валюта] в [валюта]». 
11. Время по городу. 
Если хотите узнать время по какому либо городу, то используйте синтаксис: «time» или русский аналог «время» и название города. 
12. Google калькулятор. 
Google умеет считать онлайн! Достаточно вбить пример в строку поиска и он выдаст результат. 
13. Поиск по типам файлов. 
Если вам необходимо найти что-то по конкретному типу файла, то у Google есть оператор «filetype:» который осуществляет поиск по заданному расширению файла. 
14. Поиск кэшированной страницы. 
У Google есть собственные сервера, где он хранит кэшированные страницы. Если нужна именно такая, то воспользуйтесь оператором: «cached:» 
15. Прогноз погоды по городу. 
Ещё одним оператором поиска у Google является оператор погоды. Достаточно вбить «weather» и город, как вы увидите, будет у вас дождь или нет. 
Изображение.
16. Переводчик. 
Можно переводить слова сразу, не отходя от поисковика. За перевод отвечает следующий синтаксис: «translate [слово] into [язык]».

_________________________________________________________________________________________________

Синтетическая радужка: ученые создали автономную диафрагму.

Финские ученые создали искусственную диафрагму, которая может открываться и закрываться без использования датчиков. В будущем это может вернуть зрение пациентам с поврежденной радужкой глаза. 
Новая искусственная диафрагма может открываться и закрываться в ответ на солнечный свет без какого-либо другого внешнего контроля, точно так же, как человеческий глаз. Это поможет не только улучшить современные камеры, но также восстановить поврежденные глаза или осуществлять контроль над крошечными роботами, которые реагируют на окружение. 
Зрачок, как известно, это канал, по которому свет проникает внутрь глазного яблока. Радужка — это цветная оболочка, тонкий круг, контролирующий размер зрачка и таким образом регулирующий количество поступающего в света. На ярком свете радужка сокращает зрачок, защищая чувствительную сетчатку, которая служит для передачи зрительных сигналов в мозг. В темноте радужка раскрывается, чтобы пропустить больше света и улучшить зрительные способности. Эта же концепция используется в камерах с диафрагмой, которая открывается и закрывается, обеспечивая правильное количество света, необходимое для создания фотографии. 
Подобные искусственные отверстия обычно требуют наличие датчика, который сообщал бы им необходимое для открытия и закрытия время. Теперь же Арри Приймяги и его коллеги из Технологического университета Тампере в Финляндии создали диафрагму, которая открывается и закрывается сама по себе. Для создания этой технологии им потребовался тонкий диск 14 мм в поперечнике, на котором сеть надрезов сформировала 12 радиальных лепестков из центра, не доходящих до края — нечто вроде плохо нарезанной пиццы. Сам диск был изготовлен из полимеризованного жидкокристаллического эластомера, резинового материала, меняющего форму в ответ на нагревание. 
В темноте каждый лепесток согнут и вывернут наружу, так что в центре остается круглое, похожее на зрачок отверстие. Чтобы заставить радужную оболочку, подобную радужке нашего глаза, реагировать на свет, а не на тепло, исследователи добавили в жидкокристаллическую смесь красную краску. Когда на краситель попадает синий или зеленый свет, он нагревается, и таким образом заставляет лепестки двигаться и закрывать диафрагму. 
Команду мотивировал тот факт, что искусственные радужки, которые в настоящее время применяются для лечения людей с проблемами зрения, не могут изменять размер зрачка, по сути играя роль фиксированных контактных линз. С установленным размером зрачка, который обычно довольно мал и оптимален лишь для яркого солнечного света, в условиях плохой освещенности пациенты теряют большую часть своего зрения. 
Приймяги говорит, что устройство в настоящий момент еще не совсем готово для имплантации в человеческий глаз, поскольку оно не обладает достаточно точным контролем над искусственной диафрагмой и тоже реагирует только на довольно интенсивное освещение. «Это лишь первый шаг, но мы надеемся, что в будущем сможем усовершенствовать технологию», заявляет ученый. 
Искусственная диафрагма может закрываться в считанные доли секунды, но для многих операций ее нужно ускорить до миллисекундного уровня — к примеру, для использования в чувствительных камерах, которые в случае попадания в объектив слишком яркого света могут выйти из строя. Также ученые хотят добиться более плотного закрытия, поскольку в настоящее время даже полностью закрытая диафрагма пропускает примерно 10% света сквозь щели между лепестками. 
Впрочем, ученые уверены, что эти проблемы могут быть решены. Они надеются, что в конечном итоге радужка будет использована в микроботах, которые смогут действовать в зависимости от окружения. Источник: popmech.ru

_________________________________________________________________________________________________

Ученые определили локации и разносчиков эпидемий будущего.

Эпидемиологи из организации EcoHealth Alliance приступили к поискам потенциальных очагов будущих эпидемий. Ученые не ограничились только поисками возможных животных-разносчиков — исследователи хотят понять, как зарождаются вирусы и что именно провоцирует массовое распространение болезней. 
Зоонозные инфекции, которые передаются от животного к человеку, давно известны науке. Первыми разносчиками ВИЧ, пандемического гриппа, вирусов Зика и Эбола были именно животные. Организация EcoHealth Alliance решила изучить большие данные, связанные с последними вспышками эпидемий, и спрогнозировать их возникновение в будущем. 
Для этого эпидемиологи во главе с ученым Питером Дасзаком создали базу данных из 600 вирусов и более 750 млекопитающих, которые им подверглись. Результаты исследования, опубликованного в журнале Nature, оказались довольно предсказуемыми. Оказалось, что чаще всего людей заражают животные, которые географические и генетически близки человеку. К первой категории относятся, например, крысы, а ко второй — приматы. Неплохо с задачей распространения вирусов справляются и комары. 
Животные, которые подвержены наибольшему разнообразию вирусов, также более опасны. Именно поэтому угрозу человечеству несут летучие мыши — именно они, как полагают ученые, спровоцировали распространение вируса Эбола и привели к гибели более 11 000 человек.
Изучив паттерны последних эпидемий, ученые выявили несколько географических зон риска. К ним относятся Центральная и Южная Америка, в которых сосредоточены большие популяции летучих мышей. В Северной Америке, как и в Южной, источником вирусов могут стать грызуны. 
В интервью The Verge Дасзак отметил, что эту условную карту не стоит считать гидом по будущим очагам инфекций. Однако ее можно использовать для проведения исследований в рамках проекта Global Virome Project, цель которого — собрать образцы и секвенировать ДНК 99% вирусов, несущих угрозу человеку. На этот проект уже выделено $3,4 млрд. 
Ранее международная группа ученых раскрыла математическую закономерность в распространении эпидемий. Однако ученые отмечают, что предсказать возникновение эпидемии крайне сложно. Существуют сотни зоонозных инфекций, но лишь некоторые из них передаются человеку. И механизм этого перехода до сих пор не изучен. Чтобы его понять, нужно проанализировать, как инфекция распространяется среди людей.
Ученые также допускают, что некоторые болезни уже могли «войти в контакт» с людьми, и когда разразится эпидемия, будет слишком поздно. 
Вирусы могут десятилетиями и даже веками передаваться от животного человеку и обратно, пока не произойдет вспышка. Так исследования доказали, что вирус Зика присутствовал в организме обезьян еще в 1947 году, однако первая крупная эпидемия произошла в 2007 году, а по миру вирус распространился совсем недавно. 
Эксперт по инфекционным заболеваниям Рональд Розенберг считает, что нужно создавать центры диагностики в районах с дикой природой. Эти учреждения должны отслеживать состояние людей, контактирующих с животными, и заблаговременно выявлять странные симптомы, даже если на первый взгляд они указывают на обычную инфекцию. Розенберг уже тестирует такую систему в Уганде. 
Ученые также допускают, что некоторые болезни уже могли «войти в контакт» с людьми, и когда разразится эпидемия, будет слишком поздно. Об этих рисках говорит и миллиардер и филантроп Билл Гейтс. По его мнению, в ближайшие 10 лет человечество может пережить крупнейшую эпидемию гриппа или другого инфекционного заболевания, с которой медицина рискует не справиться.
Также Гейтс полагает, что главная угроза будущего — это биотерроризм. Есть риск, что в ближайшие 10-15 лет мощный патоген убьет более 30 млн человек менее чем за год. Однако миллиардер не собирается ждать наступления биоапокалипсиса — Фонд Билла и Мелинды Гейтс при поддержке ряда правительств уже создал организацию, которая будет заниматься разработкой новых вакцин от болезней будущего. Источник: hightech.fm

_________________________________________________________________________________________________

Нейтрино: крошечная частица, покорившая Вселенную.

Когда-то ее считали лишь «частицей без свойств», странствующим космическим фантомом. Теперь же обсерватории мира бросают все свои силы на исследование ее характеристик. Составляющая темной материи, источник энергии расширения Вселенной, причина гравитационной нестабильности эпохи Большого Взрыва. Знакомьтесь — кроха-нейтрино. 
Сейчас мы стоим на пороге новой эпохи в космологии – эпохи нейтрино. За открытия в сфере взаимодействия этих частиц присуждают Нобелевскую премию, а область знаний о них даже планируется выделить в отдельный раздел науки о небесных телах – нейтринную астрофизику. Но что же это, в конце концов, такое, и чем так революционны исследования этих частиц? 
Итак, представьте себе ситуацию: начало ХХ ст., после открытия радиоактивности совместными усилиями Анри Беккереля и супругов Кюри, у физиков мира появляется новая «забава» — ядерные реакции. Первым наблюдать их посчастливилось Эрнесту Резерфорду, который, используя знания о недавно обнаруженном радиоактивном излучении ядер атомов, с помощью потока альфа-частиц превращает азот в изотоп кислорода – и осуществляет тем самым первое в истории искусственное превращение элементов. Ученые с запалом потирают руки: вот и очередное открытие, которое может изменить физику будущего. Но не все прошло так гладко. Несколькими годами позднее молодую и еще не окрепшую отрасль ядерной физики настигает глубочайший кризис. Оказалось, что при протекании ядерных реакций бета-распада (реакция превращения ядра элемента с испусканием бета-частицы – электрона или позитрона) не соблюдаются основополагающие законы сохранения энергии и импульса: сумма количества затраченной энергии до реакции и после не совпадает – какая-то часть ее будто бы «улетучивается». Наверное, вам будет довольно сложно понять состояние выдающихся ученых в тот момент, но это было самое что ни на есть отчаяние, граничащее с депрессией. Даже такие гении «физических дел», как Нильс Бор, опускали руки перед «бета-парадоксом» и, оправдываясь тем, что не все под силу постичь человеческим разумом, готовы были отказаться от основных для физики законов сохранения. 
Ситуацию спас молодой швейцарский физик-теоретик Вольфганг Паули, который, к слову, приходился учеником Нильсу Бору. Рассерженный на своего учителя и его коллег, так легко сдающих позиции перед вызовами науки, он осмелился постулировать наличие в таких реакциях «неуловимой» частицы, которая, по его словам, должна была уносить часть энергии с собой и уравновешивать соотношения импульсов и энергий частиц до и после взаимодействия. Таким образом молодой ученый лишь пытался отвести гениальные умы от мысли про отказ от законов физики – на деле, его догадки на тот момент ничем не подкреплялись. Каково же было удивление Паули, когда через 23 года его предположения таки нашли свое экспериментальное подтверждение в лаборатории итальянского физика-ядерщика Энрико Ферми! «Пойманную» частицу окрестили нейтрино, в переводе – нейтрончик, «нейтральненький». (В. Паули, выдвигая в 1930 г. свою гипотезу, предлагал называть эту частицу нейтроном, т. к. она электрически нейтральна, но этим термином в 1932 г. уже была названа частица, входящая в состав ядра атома, открытая Джеймсом Чедвиком.) 
Тут, пожалуй, следует сделать паузу и разъяснить, как именно «срабатывает» нейтрино в процессах бета-распада и не только, и какие уникальные физические свойства делают эту частицу по-настоящему «призрачной». 
Согласно Стандартной модели (теоретическая конструкция в физике, описывающая все элементарные частицы) не все элементарные частицы являются фундаментальными – то есть такими, что составляют первоначальное звено в построении атома молекулы вещества. Так, если взять нуклоны – протон и нейтрон – то они состоят из кварков, которые, в свою очередь, поделить на меньшие составляющие уже невозможно. И таких разновидностей бесструктурных или «точечных» частиц три: помимо упомянутых кварков к ним также относятся лептоны и калибровочные бозоны (хотя последние, скорее, выступают лишь посредниками при взаимодействии предыдущих двух видов). Основная разница между упомянутыми частицами состоит в том, в каких видах фундаментальных взаимодействий (всего существует четыре вида фундаментальных взаимодействий: гравитационное, электромагнитное, сильное и слабое; далее – ВФВ) они могут участвовать: лептоны, в отличие от кварков, не вступают в сильное взаимодействие (cильное взаимодействие удерживает ядро атома и не дает нуклонам, составляющим его, разлететься) а калибровочные бозоны делятся на подвиды, каждый из которых является «переносчиком» конкретного ВФВ. Так вот к чему мы ведем: нейтрино относится к классу лептонов, но немного отличается от своих собратьев. Дело в том, что все его «лептонные родственники», наиболее известным из которых для нас является электрон, обладают электрическим зарядом, который позволяет им вступать в электромагнитное взаимодействие. Нейтрино же электрически нейтрально, а, следовательно, из четырех ВФВ для него остаются лишь гравитационное и слабое; но основным и единственным, в котором его можно заметить, является именно слабое взаимодействие. 
В чем же оно заключается? Да все те ядерные реакции, о которых велась речь ранее, и являются примером слабого взаимодействия. Оно отвечает за превращение одной частицы в другую посредством ядерного распада. И вот как это происходит: при приближении нейтрино практически вплотную (слабое взаимодействие названо слабым, так как действует только на крошечных расстояниях (приблизительно 0,1% диаметра протона) к, например, нейтрону, W+ — бозон нейтрино (до этого мы говорили, что конкретный вид калибровочного бозона отвечает за конкретный вид взаимодействия, так вот в слабом взаимодействии участвуют W-отрицательный (W-), W-положительный (W+) и Z-нейтральный (Z0) бозоны) переходит в нейтрон, где изменяет его слабонегативный кварк на слабопозитивный; имея теперь в своем составе два слабопозитивных и один слабонегативный кварки, нейтрон превращается в протон, а нейтрино, потеряв позитивный W+-бозон, приобретает отрицательный заряд – и становится электроном. Так как число элементарных частиц атома элемента теперь изменено, то изменяется и сам химический элемент. Так и происходит полный процесс превращения элементов с учетом всех законов сохранения. 
Таким образом, единственный способ обнаружить нейтрино – это «поймать» его в момент взаимодействия с другой частицей, когда и происходит такое превращение. Но все не так просто, как кажется. Помимо всего прочего, нейтрино практически не контактирует с материей. Эти частицы беспрепятственно пронзают насквозь Солнце, нашу планету, нас! В этом «неуловимой» частице помогает и ее чрезвычайно маленькая масса: приближаясь к массивным телам, ее скорость ни на йоту не уменьшается, и она преодолевает гигантские небесные объекты легче, чем луч света преодолевает стекло. Оглянитесь вокруг: все, что вас окружает сейчас, в эту секунду пропускает через себя сотни триллионов нейтрино, и вы в том числе. Но узнать об этом вы сможете только лишь прочитав подобную статью: почувствовать нейтринные потоки невозможно. Это то, что называется интенсивностью взаимодействия: чем больше длина свободного пробега частицы (то есть расстояния, которое частица может преодолеть без смещений, столкновений и т.д.), тем слабее ее взаимодействие с веществом. У нейтрино это расстояние измеряется в астрономических единицах (среднее расстояние от Земли до Солнца, принятое за единицу измерения). 
А это значит, что, чтобы поймать частицу-призрак, иногда нужно ждать невероятно долго, пока одна из триллиарда их не удосужится задеть один из атомов какой-нибудь молекулы. Поэтому астрофизики идут на все, чтобы не только не упустить этот шанс, но и увеличить вероятность его наступления. Так, чтобы отсеять другие фоновые процессы и не перепутать, к примеру, частицу из космического луча с нейтрино, установки по регистрации последних размещают глубоко под землей (японский детектор Super-Kamiokande – 1 км от поверхности; канадский детектор SNO –– 2 км) или и того лучше – в толщи льда Антарктиды (детектор Ice Cube). Все эти детекторы работают по принципу фиксирования сверхчувствительными фотоумножителями момент взаимодействия нейтрино с частицами атома молекулы воды, когда в результате образуется сверхбыстрая заряженная частица, провоцирующая в дальнейшем черенковское излучение (правильнее даже будет – излучение Вавилова-Черенкова: свечение в прозрачной среде, вызванное заряженной частицей, которая движется со скоростью, превышающей скорость света в этой среде). 
Но вы спросите: а для чего это все? Ведь экспериментально наличие этой частицы уже было доказано Ферми, да и ее роль в процессах ядерного распада тоже известна. Для чего же все эти тысячи фотоумножителей, десятки тысяч тонн воды и километры выкопанной земли (и даже льда)? А дело в том, что, как очень точно некогда высказался советский физик-теоретик М.Марков: 
«Современнику трудно гадать, какое истинное место займет нейтрино в физике будущего. Но свойства этой частицы столь элементарны и своеобразны, что естественно думать, что природа создала нейтрино с какими-то глубокими, пока для нас не всегда ясными целями». 
Сказана эта фраза была еще в конце ХХ ст., сейчас же мы знакомы с нейтрино гораздо ближе, и уже можем кое-что констатировать. 
Вспомните только последнюю Нобелевскую премию по физике – она была вручена за нейтринные осцилляции. Этим страшным словосочетанием называется, по сути, превращение одного вида нейтрино в другой. Помните, мы говорили о лептонах? Так вот кроме электрона к ним также относятся мюон и тау-лептон (не заморачивайтесь с названиями: они отличаются лишь массой и реакциями, в которых задействованы). Каждому из этих разновидностей лептонов соответствует отдельный вид нейтрино: электронный, мюонный и тау-нейтрино (существует также гипотеза о существовании четвертого вида – стерильного нейтрино, который вообще не взаимодействует с веществом). Отличаются они, соответственно, тем, какую частицу порождают в результате взаимодействия с атомом. Вот в приведенном выше примере с реакцией взаимодействия нейтрино с нейтроном в результате испустился электрон – следовательно, это был след электронного нейтрино. При этом лауретами было обнаружено, что виды нейтрино взаимодействуют и друг с другом, имея возможность превращаться в «своего товарища». То есть электронное нейтрино становится мюонным, а то, в свою очередь, может обернуться на тау-нейтрино. Это многое объясняет, так как до этого все нейтринные детекторы регистрировали только 1/3 от предполагаемого количества частиц. Как выяснилось, проблема заключалась в том, что отлавливали они лишь электронные нейтрино, не зная, что 2/3 их на пути из космоса до Земли изменяют свою «специализацию». 
Но почему же это открытие настолько важно, что заслуживает Нобелевской премии? Да потому, что долгое время нейтрино считалось безмассовой частицей, а открытие процессов осцилляции является беспрекословным доказательством обратного: виды могут взаимо-превращаться только если они имеют массу, причем такую, что электронное нейтрино будет легче, чем последнее в цепочке превращений – тау-нейтрино. Доказательство же существования у нейтрино массы открывает перед нами целые горизонты в исследовании роли этой частицы во Вселенной. 
И вот почему. Нейтрино, несмотря на всю не примечательность своих физических характеристик, является самой распространенной частицей во Вселенной. Их настолько много, что на все остальное «не нейтринное» вещество приходится всего около 3-10% Вселенной! То есть, как выражаются многие астрофизики, мы, считайте, живем в нейтринной Вселенной! Однако будь эти частицы безмассовыми, подобного рода информация не принесла бы нам много пользы – разве что для общего развития. Но так как мы уже убедились в обратном, мы можем даже утверждать, что именно сила тяготения нейтрино определяет процесс ускоренного расширения Вселенной – ведь доминируя в количестве и, как следствие, в массе, нейтрино преобладает и в гравитационном действии. Вполне возможно, что именно охлаждение нейтринных сгустков и разбрасывание их по космическому пространству может раздувать нашу Вселенную. Энергии для этого им вполне хватает, ведь они забирают ее у самих звезд. 
По данным ученых Вселенная прекратит процесс расширения, как только достигнет критической плотности. Ранее считалось, что до нее еще довольно далеко (примерно 100 раз по возрасту современной Вселенной), но учитывая ново-выявленные обстоятельства – наличие массы у частиц, плотность которых во Вселенной в 30 раз больше плотности другого вещества, – этот момент гораздо ближе, чем нам кажется. В этом случает сила тяготения нейтрино уже будет служить тормозом в расширении. 
Также, это открытие проливает свет и на многие процессы, происходящие в период Большого Взрыва. Долгое время было неясно, каким же именно образом распределялась материя, составляющая теперь все небесные тела. Вначале она представляла собой однородное раскаленное вещество – плазму. Но что заставило ее так «раскучкуваться» в местах, где в дальнейшем были образованы галактики? И ответ снова – нейтрино. Дело в том, что уже по истечению 1 секунды после Большого Взрыва плазма перестала быть для этих частиц препятствием – они вышли за ее пределы, перестав участвовать во внутре-плазменных реакциях. Тогда эти частицы, полные энергии, двигались со скоростью света и, взаимо-превращаясь, с легкостью влетали и вылетали из «нейтринных облаков». Но со временем (приблизительно 300 лет) нейтрино растратили свою энергию, и их скорость уже не позволяла им так просто покидать «нейтринные сгустки». Так образовались плотнейшие скопления нейтрино. К этому времени плазма уже приостыла и стала менее плотной. Тут и сработала сила тяготения скоплений нейтрино, которая и «расшматовала» однородное вещество. Таким образом скопления вещества распределились по «нейтринным облакам», в дальнейшем превратясь в целые системы из небесных тел. Так в космическом пространстве появились галактики, размещенные в «нейтринных ячейках». 
Все это делает так званую «частицу-фантом» невероятно интересной и важной для изучения. Если нам таки удастся с ней «подружиться», мы сможем намного ближе познакомиться с космосом и процессами, протекающими в его глубинах. Ведь в отличие от электромагнитных волн, излучений и т.п. нейтрино поступают к нам из самого центра событий – сердцевины звезд, например, таких, как Солнце, где участвуют в термоядерных реакциях. Беспрепятственно преодолевая огромнейшие дистанции длинной в световые года, они могут доставлять нам ценную информацию о всех этих процессах из самых дальних закоулков космоса. 
Но более интересно даже другое. Всем известно, что во времена зарождения Вселенной вместе с материей сосуществовала и антиматерия. Мы знаем, например, что электрон имеет свою античастицу – позитрон, а протон – антипротон. И так со всеми частицами: свойства одинаковые, только заряд противоположный. Но в нашем мире почему-то стала преобладать обычная материя. Где же антиподы всем частицам? Существует гипотеза, что где-то во Вселенной может быть зеркальное отражение нашего мира – антимир из антивещества. Но даже если и предположить такое, найти его будет практически невозможно – несмотря на то, что все химические процессы там будут протекать при участии антиатомов, нашим физическим приборам этого не распознать: все излучения, поступающие к нам «оттуда» будут идентичны нашим. Единственный вариант обнаружить антимир – это поймать антинейтрино. (Так как нейтрино не имеет заряда, разница между ним и его антиподом заключается в направлении спина — говоря ненаучным языком, стороной вращения вокруг себя.) Ведь эта частица, точно также как нейтрино с электроном, принимает непосредственное участие в образовании позитрона (а также антимюона и антитау-лептона). Так что, зафиксировав однажды прилетевшее антинейтрино, мы сможем говорить об антиматерии, таящейся в космосе. Мысль эта, конечно, кажется до боли фантастической, но куда же в астрофизику и без капли фантазии? 
Вот такие они, эти нейтрино. Настолько же интересные, насколько и полезные.

___________________________________________________________________________________________________

Электромобили должны заряжаться на ходу, но как? 

Мировая автомобильная промышленность стоит 2 триллиона долларов, но на электрические и гибридные автомобили в настоящее время приходится меньше 1% от этого числа. Тем не менее эксперты предсказывают взрыв в отношении к электрическим автомобилям, или просто электромобилям. Компания UBS прогнозирует, что спрос на электромобили достигнет поворотной точки в 2018 году, поскольку их стоимость будет снижаться и в конечном счете опустится ниже стоимости обычных автомобилей с двигателем внутреннего сгорания (в том числе и за счет затрат на них). В Китае наблюдали 53-процентное увеличение продаж электромобилей с 2015 по 2016 год, а Индия планирует продавать только электромобили к 2030 году. 
И даже если они будут доступными, даже если они не так сильно будут отравлять воздух, электромобили будут иметь одно основное ограничение… они будут электрическими. Электрика работает на батарейках, аккумуляторах, а если батареи не заряжать, они умирают. 
Tesla Model 3 сможет пройти 350 километров на одной зарядке, а новый Chevy Bolt — 400. Это не такие уж малые расстояния, особенно по сравнению с 50-километровым диапазоном пробега Volt три года назад. Несмотря на это, когда аккумулятор электромобиля иссякает, на его зарядку требуются часы. 
Исследователи из Стэнфордского университета только сделали шаг к решению этой проблемы. В статье, опубликованной на прошлой неделе в Nature, команда описала новый метод беспроводной передачи электричества движущемуся объекту в пределах близкого расстояния. 
Беспроводная передача энергии работает с использованием магнитно-резонансной связи. Переменное магнитное поле в катушке передатчика заставляет электроны в катушке приемника осциллировать, при этом лучшая эффективность передачи возникает, когда обе катушки настроены на одну и ту же частоту и расположены под определенным углом.
Это затрудняет передачу электричества, если объект движется. Чтобы обойти необходимость непрерывной ручной настройки, команда из Стэнфорда удалила радиочастотный источник в передатчике и заменила его усилителем напряжения и резистором обратной связи. 
Система калибрует себя на требуемую частоту для разных расстояний. Используя эту систему, ученые смогли беспроводным образом передать милливаттный заряд электричества движущейся светодиодной лампочке в метре от нее. Никакой ручной настройки не требовалось, и эффективность передачи оставалась стабильной. 
Один милливатт — это, конечно, далеко не десятки киловатт, потребляемых электромобилем. Но теперь, когда стало понятно, что усилитель справляется, команда работает над наращиванием количества электроэнергии, которое может быть передано с использованием этой системы. 
Выключение самого усилителя может иметь большое значение — для этого теста инженеры использовали усилитель общего назначения с КПД около 10%, но изготовленные на заказ усилители могут повысить эффективность до более чем 90%. 
Потребуется некоторое время, прежде чем электромобили начнут заряжаться во время движения по шоссе, однако именно такое будущее предвидят эксперты по энергетике. 
«В теории, можно будет двигаться неограниченно долго, даже не останавливаясь на подзарядку», говорит Шанхуй Фан, профессор электрической инженерии и главный автор исследования. «Есть надежда на то, что вы сможете заряжать свой электромобиль, двигаясь по шоссе. Катушка на дне транспорта будет получать электричество от катушек, подключенных к энергопроводу в самом полотне дороги». 
Внедрение линий электропередачи в дороги по определению будет крупным инфраструктурным проектом, и нет никакого смысла производить его, пока электромобили не появятся на каждом углу. Когда электромобили будут представлять хотя бы 50% транспорта на дорогах или больше. Но если зарядка упростится, больше водителей перейдут на электричество. 
Tesla уже немного упростила владение электромобилем, вкладывая значительные средства в свою сеть Supercharger. В настоящее время по всему миру имеется 861 станция Supercharger с 5655 зарядными местами, и они продолжают строить. Станции бесплатно заряжают транспортные средства Tesla за полчаса-час. 
Вскрытие дорог для встраивания линий электропередач, которые могут заряжать автомобили во время движения, кажется ненужным, потому что распространяются другие технологии. Но по мере того, как электромобили будут становиться все популярнее, водители будут ждать от них максимально плавного опыта, который может и будет включать отсутствие необходимости останавливаться, чтобы зарядить автомобиль. 
Несмотря на значительные препятствия, зарядка электромобилей на ходу от команды Стэнфордского университета имеет удивительные перспективы и потенциал. Не в последнюю очередь она может найти применение в сотовых телефонах и персональных медицинских имплантатах. Возможно, с ее помощью роботы избавятся от проводов. Источник: hi-news.ru

 

Мой электронный адрес

Если кто хочет со мной связаться, или есть какие то предложение, информации. Об пожеланиях, ошибках и.т.д.. Пишите, вот моя электронная почта:
alavka907@gmail.com

Свежие записи
Декабрь 2017
Пн Вт Ср Чт Пт Сб Вс
« Ноя    
 123
45678910
11121314151617
18192021222324
25262728293031
Архивы

Декабрь 2017
Пн Вт Ср Чт Пт Сб Вс
« Ноя    
 123
45678910
11121314151617
18192021222324
25262728293031