16.07.2018

PostHeaderIcon 1.Краткий ликбез по Солнечной Системе.2.Взглянуть на Юпитер с иных позиций.3.Мумие для повышения иммунитета.4.Как правильно варить овощи.

Краткий ликбез по Солнечной Системе.

Итак, начнем мы с основных принципов действия нашей системы. Как вы знаете, в центре расположилась звезда Солнце, вокруг которой вращаются 8 планет, имеющие самые разнообразные характеристики, начиная от необычного рельефа Меркурия и заканчивая потрясающим видом Нептуна. Все планеты находятся в так называемой плоскости эклиптики, т.е каждая имеет почти круговую орбиту и располагаются по системе в виде почти идеального диска, а именно в одной плоскости.
Масса всей системы равно 1,0014 . Где 1 = массе Солнца. Как не сложно догадаться, Звезда занимает 99,86 % всей массы системы. 
Солнечная система имеет такую последовательность тел: Солнце – Меркурий – Венера – Земля – Марс – Пояс астероидов – Юпитер – Сатурн – Уран – Нептун – Плутон.
Плутон хоть и не является официально планетой Солнечной системы, но мы все равно его разберем.
Солнце
Ну что же – Солнце. Наша звездочка имеет по спектральному классу характеристику G2V, что вам, конечно же, ничего не скажет, давайте тогда разберемся. Итак, в данном случае идет рассмотрение звезды по Йеркской классификации, где:
• «G» – цвет, излучаемый звездой (т.е. желтый)
• «2» — означает уровень температуры фотосферы звезды (у Солнца 5780 К ~ 5507 °C)
• «V» — карликовые звезды ну или же звезды главной последовательности по диаграмме Герцшпрунга – Рассела. А если снова объяснять что-то непонятное, то это звезды, где основная термоядерная реакция – это сгорание водорода и перерождение его в гелий. 
Да-да, вы все правильно поняли: Солнце – есть желтый карлик, как бы обидно не было, но так и есть. А вертимся мы вокруг уж не такого и большого огненного шара, диаметра всего 1.4 млн км и массой 332270 масс Земли. Из-за того, что Солнце буквально горит, его масса и объем постоянно уменьшаются. Только за час оно потеряет в диаметре 1 метр, поэтому можно сказать, что звезда худеет.
Звезды, подобные нашей, живут в среднем 10 млрд. лет. Но так как Солнцу еще 4,3 млрд. лет, то оно посветит нам около 7 млрд. лет и землянам не стоит переживать по поводу того, что звезда взорвется. Мы либо сами себя уничтожим, либо наши технологии разовьются до такого уровня за это время, что предугадать и остановить взрыв сверхновой, будет не сложней, чем возвести шалаш посреди огромной стройки в центре города.
Меркурий.
Самый близкий друг Солнца, расположен на расстоянии 57 909 176 км от Звезды или 0,4 а.е (астрономическая единица – расстояние от Солнца до Земли). Хоть Меркурий и находится ближе всего к звезде, но температура на его поверхности не самая горячая в Солнечной системе, этот рекорд принадлежит Венере, но к ней мы вернемся чуть позже. Сам Меркурий по размеру в диаметре равен 2440 км, а по массе всего 0,055 массы Земли. У первой планеты от Солнца очень интересный рельеф: помимо кратеров по всей поверхности, имеются многочисленные уступы, простирающиеся на сотни километров. 
Большое количество времени считалось, что Меркурий постоянно повернут к звезде одной стороной, словно наша Луна к нам. Кстати, у планеты нет спутников, а сама планета имеет довольно разряженную атмосферу с частицами, выбившимися из почвы под ударами солнечного ветра. 
Что еще интересно, так это то, что эта планета делает оборот вокруг звезды за 58 земных суток, а сама поворачивается вокруг своей оси примерно за 88 земных суток. В результате получается, что по прохождении одного цикла вокруг Солнца, лучи будут падать на противоположную сторону Меркурия, а опять, по прохождении второго цикла, звезда будет светить там же. 
Венера.
Венера располагается третьей в нашем списке и второй планетой от Солнца. Очень схожа с Землей и имеет своеобразную атмосферу в 90 раз плотнее Земной, а вместо кислорода преобладает углекислый газ и воды там намного меньше. Как уже было сказано, Венера – самая горячая планета Солнечной системы, температура ее поверхности примерно 400-450 °C. Такие характеристики (плотность атмосферы и температура), скорее всего, появились из-за парникового эффекта на Венере. Однако у планеты нет своего магнитного поля, и атмосфера поддерживается на планете по средствам вулканов, которые постоянно выбрасывают на поверхность большое количество углекислого газа.
Исследование Венеры показали, что она относительно молодая, по космическим меркам конечно. И, так же, что там когда-то были океаны, подобные, тем, что сейчас на Земле, но из-за высокой температуры они испарились. Визуально с орбиты или Земли поверхность никак не рассмотреть, ибо солнечные лучи не проходят через атмосферу, но радиоволнам проникнуть туда получилось, а значит и удалось получить примерную карту планеты. Тем не менее люди все равно посылали множество зондов, но специфика поверхности такова, что им удавалось функционировать не более нескольких часов после приземления
Земля.
Ну вот мы и подлетели к нашей планете – Земля. Самое прекрасное, красивое и разнообразное место в Солнечной системе. Все это возможно только благодаря расположению планеты, будь она ближе к Солнцу – из-за высокой температуры жизнь не смогла бы получить достаточных условий, в связи с высокой температурой, и нас с вами не было. То же самое касается и дальнего расположения от звезды – низкая температура не позволила бы существовать жизни, такой, какой мы видим ее с вами сейчас. А именно, это идеальное расстояние, примерно равно 150 млн. километров для нашей Солнечной системы.
Хоть это и не заметно, но Земля имеет не шарообразную, а эллиптическую форму. А именно она вытянута на экваторе и сплющена на полюсах.
У планеты есть единственный естественный спутник – Луна. Она по большей своей поверхности покрыта кратерами.
У каждой звезды есть своя область пространства, где на планете может возникнуть жизнь, и Земля в такой зоне. Венера находится на максимально близкой границе, а Марс на максимально дальней от Солнца. Еще наша планета – это единственная планета, где с точки зрения официальной науки была найдена жизнь.
Земля имеет озоновый слой и свое магнитное поле. Первый не пропускает ультрафиолетовое и радиоактивное излучение, чем сохраняет жизнь на планете, а второй отклоняет частицы солнечных ветров. Эти не маловажные особенности и позволили развиться жизни.
Здесь вы найдете все: начиная от микроорганизмов, которые могут выжить и в жерле вулкана и чуть ли не в вакууме (тихоходка), до сложно-организованных организмов, переносящих более узкий круг внешних агрессивных условий, но обладающие сознанием и хоть каким-то разумом. 
Марс.
Красная планета, обязана своим цветом оксиду железа, обильно распространенному по поверхности, а названием древнеримскому божеству – Марсу (бог войны). Четвертая планета от Солнца имеет два маленьких спутника. Марс можно причислить к планетам земной группы, на нем есть русла от рек, полярная шапка. Возможно, когда-то давно, на красной планете была жизнь, но из-за какой-то катастрофы она вся исчезла с поверхности. 
Температура планеты в среднем колеблется от −89 до −31 °C. На Марсе полярные шапки в зимнее время увеличиваются в размерах и занимают большую территорию, чем в летнее время. В отличии от Земли, где полярные шапки состоят из водяного льда на Марсе они состоят из такого же водяного льда – это вековая составляющая «шапки» и сезонная, состоящая из углекислого газа.
У нас с этой планетой много общего, даже сутки на Марсе длятся 24.62 часа, что, всего, на 40 минут дольше, однако год на красной планете вдвое длиннее, чем земной. У Марса так же имеются свои климатические пояса.
Что еще хочется выделить, так это то, что там расположен самый большой вулкан в Солнечной системе. Олимп, как его называют, имеет высоту 24 километра и в основном образован жидкой лавой, которая давно уже остыла. А в поперечнике вулкан равен 550 км.
Пояс астероидов.
В Солнечной системе, между Марсом и Юпитером располагается пояс астероидов. Существует даже теория о том, что в давности на его месте существовала планета, разрушенная по каким-то обстоятельствам, может она была разорвана гравитационным притяжением Юпитера и Марса, а может что-то другое.
Плотность тел в поясе настолько мала, что ни один объект, отправленный за его пределы, не столкнулся там ни с одним астероидом. Даже если сложить все объекты находящиеся там в одну планету, то она будет меньше Луны. Так же есть предположение, что пояс астероидов – это не что иное, как строительный материал для планеты, которая, опять же, не сформировалась по причине Марса и Юпитера.
Многие годы ученые искали планету в этой области, и нашли. Церера – карликовая планета, размерами своими около 1000 км, и, тем не менее, самый большой объект в поясе. После обнаружения ее считали планетой, потом крупным астероидом и наконец, дали статус карликовой планеты. Ну а вообще в поясе обитают четыре крупных объекта: Гигея, Веста, Паллада и, собственно, Церера.
Юпитер.
Ну вот мы и добрались до газового гиганта. Планеты подобные Юпитеру полностью состоят из газа. В основном это водород – 90%, остальное Гелий, есть и примеси других газов, но они незначительны. В Солнечной системе – это самая большая планета, даже если взять все планеты вместе, то Юпитер все равно будет больше.
У планет такого типа очень большая масса и, как следствие, чем глубже вы будите погружаться к центру планеты, тем сильнее будет давление. На счет ядра многие ученые расходятся во мнении, одни считают, что ядро состоит из твердой породы, другие, что оно есть шарик расплавленного железа, а третьи думают, что оно представляет собой сильно сжатые, до твердого состояния, газы.
Эта планета больше похожа на Солнце, чем на Землю или другие планеты, до пояса астероидов. И если бы Юпитеру досталось больше вещества, то вполне вероятно, что он стал бы звездой. Планета даже выделяет тепла больше, чем до него доходит от Солнца, в связи с чем он теряет в размерах около двух сантиметров в год. 
Что касается температуры, то в верхних слоях атмосферы планеты она около -130 °C. Однако чем глубже вы будите спускаться, тем теплей будет становиться, например уже на глубине 130 км. она равна +150 °C, а в центр вообще +30 000 °C. Это происходит не из-за термоядерных реакций, протекающих в планете, а по причине огромного давления в центр0е.
Сатурн.
Второй газовый гигант, к которому мы подошли и вторая по величине планета в Солнечной системе. Сатурн имеет яркие, шикарные и красивые кольца, как и у всех Гигантов нашей системы, однако у Юпитера, Урана и Нептуна они плохо выражены и не имеют четких очертаний, заметных глазу. Ширина этих колец у Сатурна имеет около нескольких сотен тысяч километров, однако, в толщину всего несколько сот метров. Именно кольца становятся излюбленной темой писателей, художников и других одаренных личностей. Состав колец пестрит разноразмерными объектами, начиная от маленькой снежинки и заканчивая размерами в многоэтажный дом.
Как и Юпитер у Сатурна такое же строение: в верхних слоях атмосферы – газообразный водород и немного гелия. Ну и чем ниже мы спускаемся, тем становится теплее и плотнее. Есть факт, что если Сатурн положить в воду, то он всплывет, это происходит по причине того, что плотность планеты, намного меньше плотности воды. 
На этой же планете самые быстрые ветра в Солнечной системе, они достигают 500 м/с. И, конечно же, очень знаменитый шестиугольный вихрь, имеющий почти ровные стороны. Причина его образования до сих пор является для ученых загадкой.
Планета имеет не идеальную форму шара, а скорее эллиптическую, только намного сильней чем Земля. 
В данный момент у Сатурна насчитывают 62 спутника, один из них – Титан, самый большой спутник в Солнечной системе.
Уран.
Седьмая планета от Солнца, и третья по величине. Уран отличается от Юпитера или Сатурна, тем, что в недрах первого вместо металлического водорода присутствует большое количество льда. Стоит заметить, что на Уране температуры ниже, чем на любой другой планете Солнечно системы, они достигают -224 °C. Планету окутывают облака, в составе которых крошечные кристаллы метана. Именно это и придает Урану такую красивую окраску. Ниже идет мантия, состоящая из растворенного в воде амиака, и, как следствие, имеет высокую плотность. Еще глубже располагается ядро в состав его входят металлы и кремний, по размерам оно похоже на Землю, однако плотность его выше раза в 2, весит и того в 5 раз больше. 
Между мантией и ядром область очень высокого давления, оно достигает 8 000 000 бар. 1 бар – именно с этой отметки начинается поверхность планеты.
У Урана имеются кольца, достаточно темные, что бы их не заметить и не такие шикарные, как у Сатурна. Но все же они есть и их 13 штук. Своей незаметностью они обязаны малыми размерами входящих в них частиц, от маленьких пылинок, до нескольких долей метра, да темными размерами этих самых частиц.
Нептун.
Как и большинство планет системы, он получил название в честь римского божества – Нептуна, бога воды и океанов. Это восьмая и последняя планета Солнечной системы. значительно уступает по размерам и массе Юпитеру и Сатурну, однако с Ураном присутствует здоровая конкуренция. Хоть Нептун и уступает по размерам своему собрату – Урану, однако в массе он тяжелее. 
Поверхность планеты представляет собой вязкую массу и очень далека от понятия земная твердь, поэтому за точку, отсчета снова взято давление в 1 бар.
Большое сожаление вызывает тот факт, что Нептун нельзя увидеть на ночном небе невооруженным глазом. Он представляет из себя большой синий шар с переливами, ни ода планета в Солнечной системе не может похвастаться такой глубиной цвета.
Из-за своей удаленности от нас сложно точно судить о составе Нептуна. Все теории, выстроенные на этот счет, весьма зыбки и могут оказаться ложными. Но по составу планета очень похожа на Уран. Ядро, мантия, верхние слои атмосферы – очень схожи, за исключением размеров и небольшого отличия в составе. Основным веществом, задающим цвет, является аммиак, но он не может давать такой ярко-голубой отлив. Поэтому было выдвинуто предположение, что в атмосфере присутствуют и другие вещества, делающие газовый гигант не похожим на Юпитер, Сатурн и Уран, но так похожий на земные океаны по цвету.
Плутон.
Хоть этот объект и не является планетой Солнечной системы, с 2006 года его называют карликовая планета. И с этого же года Нептун стал крайней планетой системы. 
Разглядеть Плутон достаточно сложно даже в очень мощные телескопы. Поэтому четких и точных карт Плутона не существует. Однако можно с уверенностью сказать, что основным веществом там является замерзший азот.
У этой планеты очень забавная орбита. Порой Плутон подлетает к Солнце ближе, чем Нептун, соответственно пересекая его границу. Но никогда с ним не столкнется из-за того, что орбита Плутона расположена выше плоскости эклиптики, в связи с чем, они не приблизятся друг к другу ближе, чем на 17 астрономических единиц.
Разберем состав. Ядро планеты достаточно большое, в основном состоит из силикатов. Есть предположение, что мантия – это жидкая вода, из-за, еще не остывшего ядра, продолжающая подогреваться. Поверхность планеты хоть и не однородна, но в основном своем большинстве там преобладает замерзший азот, образовавший ледяную корку. Атмосфера у планеты присутствует только по приближении к звезде, после этого, как начнется удаление, атмосфера замерзнет вновь.
У Плутона имеется большой спутник, по диаметру примерно раза в 2 меньше. Поэтому многие ученые считали Плутон и Харон – системой карликовых планет, в основном, потому что барицентр находится за пределами обоих тел.
Заключение.
Дальше у нас идет пояс Койпера – это система астероидов, окружающая Солнечную систему, в нем расположено большое количество карликовых планет и астероидов, некоторые даже больше Плутона, как, например, Эрида.
А дальше огромное количество звезд и других миров, не менее интересных миров, готовых увлечь с головой.

___________________________________________________________________________

Взглянуть на Юпитер с иных позиций.

Огромный размер, уникальный химический состав и целая система всевозможных спутников делают Юпитер одной из самых изученных планет Солнечной системы. Но несмотря на это, Юпитер таит в себе еще много тайн. Новые исследования предлагают взглянуть на газовый гигант с совершенно иной точки зрения. Представьте себя иностранцем, живущим далеко за пределами Солнечной системы. Каким вы увидели бы Юпитер?
Сначала может показаться непонятным, чем именно занимается команда астрофизиков из Института астрофизики Тенерифе (Канарские острова). На самом деле исследователи во главе с Пилар Монтанес Родригес изучают слабое свечение, отражаемой от поверхности крупнейшего спутника Юпитера Ганимеда, в то время как планета проходит между ним и солнцем.
Когда потоки солнечного света отражаются от Ганимеда, некоторые лучи отфильтровываются и распределяются в атмосфере газового гиганта. Этот свет носит рассеянный характер, и поэтому может предоставить определенную информацию о химическом составе атмосферы Юпитера.
Если бы находились в соседней звездной системе, мы видели бы Юпитер проходящим перед Солнцем. Благодаря этому мы могли бы измерить рассеянный свет Юпитера и понять, из каких веществ сформирована эта планета. Однако ведя наблюдения с Земли, мы никогда не увидим, как Юпитер проходит между нами и Солнцем, и поэтому мы лишены возможности изучить рассеянный свет, проникающий через верхние слои атмосферы Юпитера.
Действительно, единственной атмосферной планетой, проходящей между Солнцем и Землей, является Венера. Однако следующий транзит Венеры можно ожидать не раньше 2125 года.
Во время частичных затмений, когда Юпитер закрывает собой поток солнечного света и не дает ему в полной мере падать на Ганимед, команда Монтанес-Родригеса все же смогла обнаружить слабый свет, который проник через атмосферу Юпитера и отразился от спутника газового гиганты. При этом, Ганимед выступил в роли зеркала, в котором можно разглядеть особенности Юпитера.
Используя Very Large Telescope (комплекс из четырёх отдельных 8,2-метровых оптических телескопов) в Европейской Южной обсерватории в Паранале (Чили) и телескоп Уильяма Гершеля в Обсерватории Ла-Пальма (Канарские острова, Испания), исследователи смогли провести детальный спектроскопический анализ данного отраженного света и получить диаграмму состава атмосферы Юпитера. И хотя Юпитер уже был достаточно изученной планетой, команда ученых сделала неожиданное открытие относительно крупнейших объектов Солнечной системы.
В полученных результатах спектроскопического анализа содержатся данные о признаках водяного пара в атмосфере газового гиганта. Данный факт является весьма спорным, поскольку принято считать, что атмосфера Юпитера содержит крайне мало воды. Однако данное открытие позволяет предположить, что кометы занесли на Юпитер частицы водяного пара, которые до сих пор не были обнаружены.
В то же время ключ к результатам данного исследования состоит в понимании Юпитера как экзопланеты. Как нам известно, о планете можно судить по ее химическому составу и ее атмосферных стратах, поэтому исследователи надеются использовать отраженный от Ганимеда свет (во время затмения) для построения профиля, дающего представление о характере солнечного света, рассеянного в атмосфере Юпитера. Сравнивая параметры Юпитера с транзитными экзопланетами, мы можем лучше понять структуру отраженного и рассеянного света.
«Эта амбициозная идея все-таки нашла свою реализацию», — сказала астроном Сара Сигер из Массачусетского технологического института в Кембридже.
Однако, данный метод позволяет изучать лишь атмосферу Юпитера. Но остальные явления так и остаются неизученными. В качестве примера можно привести закрученные облака аммиака, которые можно отчетливо разглядеть в инфракрасном свете. В то же время, это лишь один из многих методов, которые используются астрономами в процессе изучения и проверки данных об экзопланетах.
В 2009 году команда ученых в соавторстве с Энриком Пэллом из Института астрофизики на Канарских островах провела аналогичное исследование Земли во время лунного затмения. Когда Солнце встало позади Земли, исследователи смогли измерить слабый рассеянный солнечный свет, который был отражен от поверхности Луны. В результате были получены данные о химическом составе нашей планеты. В будущем планируется провести аналогичные исследования других планет Солнечной системы.

_______________________________________________________________________

Мумие для повышения иммунитета.

В осенне-зимний период, когда наш организм подвергается довольно непростым испытаниям со стороны природы, весьма полезным будет укрепить иммунитет. А поможет вам в этом мумие. 
Растворите полностью 2 грамма сухого мумиё в 10 столовых ложках чистой теплой воды. Полученный раствор выпивайте по 1 столовой ложке натощак каждый день в течение 10 дней. 
Далее устройте перерыв на 5 дней, после чего продолжите курс. 
В течение последующих 10 дней принимайте перед сном по 1 столовой ложке мумие с медом (2 грамма сухого мумие смешайте с 10 столовыми ложками меда). 
После 10 медовых дней вновь сделайте перерыв на 5 дней. 
Затем повторите 10-ти дневный курс мумие с водой. После которого опять устройте 5 дней перерыва. 
И в завершении в течение 10 дней принимайте утром натощак мумие, разведенное водой, а перед сном – мумие, разведенное медом. 
После такого лечения вы забудете про все вирусные заболевания, укрепите иммунитет и повысите жизненный тонус всего организма.
__________________________________________________________________________

Как правильно варить овощи.

— Овощи нужно варить в малом количестве воды так, чтобы вода покрывала овощи не выше 1 см. Наилучшими способами варки считается варка на пару и варка в малом количестве жидкости. 
— Чем крупнее овощи, тем меньше питательных веществ они теряют при варке. А также цельные овощи при варке лучше сохраняют питательных свойств, чем нарезанные кусочками.
— Чтобы лучше сохранить витамины, овощи закладывают для варки только в кипящую воду, небольшими порциями. 
— Быстрозамороженные овощи — помидоры, зеленый горошек, овощные смеси — закладывают для варки, не размораживая, прямо в кипящую жидкость. 
— Овощи лучше всего отваривать в эмалированной посуде без дефектов (отколовшейся эмали), с плотно закрытой крышкой. 
— Все овощи рекомендуется варить в подсоленной воде, кроме зеленого горшка и свеклы. Так как в соленой воде зеленый горошек варится долго, а свекла теряет вкус.
— При варке различных овощей, овощи закладывают поочередно: в первую очередь те, которые требуют более длительной варки. К примеру, свекла готовится за 1 час 15 минут варки, капуста — 30-50 минут, цельный картофель — 25-30 минут, морковь — 20-30 минут, щавель и шпинат — 10 минут.
— Щавель, шпинат, стручки фасоли и лопаточки зеленого горошка варят в большом количестве кипящей воды, чтобы сохранить их натуральный цвет. 
— Помидоры, кабачки, тыкву, выделяющие при варке собственный сок, лучше варить без добавления жидкости, чтобы они сохранили наилучший вкус и питательность. 
— Добавление кислоты замедляет отваривание овощей, поэтому кислоту, а также продукты, содержащие кислоту, такие как томат, помидоры, огуречный рассол, соленые огурцы и т.д. добавляют в конце варки. 
— Витамин А и каротин хорошо переносят варку, но разрушаются от кислоты. Поэтому уксус и лимонную кислоту надо вводить в салаты, только перед подачей к столу. 
— Если вареные овощи держать в воде, где они отваривались, они становятся водянистыми и невкусными. Поэтому рекомендуется после отваривания слить воду или откинуть овощи на дуршлаг. Только цветную капусту можно хранить непродолжительное время в отваре. 
— Овощи, сваренные в кожице, легче и лучше очищаются в горячем виде. А также для приготовления пюре овощи нужно протирать горячими. 
— Кукурузу рекомендуется варить, не очищая от листьев, целым початком. 
— Сырая капуста при обжаривании становится сухой и невкусной, поэтому обязательно надо варить капусту перед обжариванием. А для начинок перед обжариванием измельченную сырую капусту обдают кипятком. 
— В плотной головке цветной капусты попадаются гусеницы. Поэтому для извлечения гусениц до варки цветную капусту следует опустить в подкисленную или подсоленную холодную воду на 30 минут.

 

PostHeaderIcon 1.Интересные факты из «Интересная физика».2.Далекая группа галактик…3.Как просверлить отверстие в бетоне.4.Соседняя галактика химически бедна?5.Самое сильное магнитное поле на Солнце.6.Малоизвестные факты о Солнце.

Интересные факты из «Интересная физика».

1. Ничто не может гореть еще раз, если уже сгорело. (Кроме оксидов взаимодействующих со фтором)
2. Пузырь круглый, так как воздух внутри него одинаково давит на все его части, поверхность пузыря равноудалена от его центра.
3. Черный цвет притягивает тепло, белый — отражает его.
4. Кнут издает щелчок, потому что его кончик двигается быстрее скорости звука.
5. Бензин не имеет определенной точки замерзания — он может замерзнуть при любой температуре от -118 С до -151 С. При замерзании бензин не становится полностью твердым, скорее напоминает резину или воск.
6. Яйцо будет плавать в воде, в которую добавили сахар.
7. Грязный снег тает быстрее, чем чистый.
8. Гранит проводит звук в десять раз быстрее воздуха.
9. Вода в жидкой форме имеет большую молекулярную плотность, чем в твердой. Поэтому лед плавает.
10. Если стакан с водой увеличить до размера Земли, то молекулы, из которых она состоит, будут размером с большой апельсин.
11. Если в атомах убрать свободное пространство и оставить только составляющие их элементарные частицы, то чайная ложка такого вещества будет весить 5.000.000.000.000 килограмм. Из него состоят так называемые нейтронные звезды.
12. Скорость света зависит от материала, в котором он распространяется. Ученым удалось замедлить движение фотонов до 17 метров в секунду, пропуская их через слиток рубидия, охлажденный до температуры, очень близкой к абсолютному нулю (-273 по Цельсию).

__________________________________________________________________________

Далекая группа галактик бросает вызов современным космологическим моделям.

Международная группа астрономов определила, что вокруг Центавра А, массивной эллиптической галактики, расположенной на расстоянии 13 миллионов световых лет от Земли, движется группа галактик-спутников, формирующая узкий диск. В новой научной работе исследователи отмечают, что такая конфигурация галактик впервые наблюдается за пределами Местной группы — группы галактик, к которой принадлежит наш Млечный путь. 
«Значение этих находок состоит в том, что они ставят под вопрос адекватность некоторых космологических моделей и симуляций, объясняющих распределение родительских и спутниковых галактик во Вселенной», — сказал один из соавторов исследования Марсель Павловски с кафедры физики и астрономии Калифорнийского университета в Ирвине, США. 
Он сказал, что согласно модели Лямбда-CDM меньшие по размерам галактики-спутники должны располагаться вокруг более массивных родительских галактик более или менее случайно и двигаться во всех возможных направлениях. Однако галактика Центавр А стала уже третьим по счету, вдобавок к галактикам Млечный путь и Андромеда, зарегистрированным примером «обширной полярной структуры», в которой карликовые галактики-спутники совместно вращаются вокруг центральной галактической массы в «предпочтительно ориентированной конфигурации», как выразился Павловски. 
Исследователи смогли продемонстрировать, что 14 из 16 галактик-спутников галактики Центавр А следуют общей картине движения и вращаются в одной плоскости вокруг родительской галактики – что противоречит часто используемым космологическим моделям, согласно которым всего лишь примерно 0,5 процента от числа систем спутниковых галактик в близлежащей части Вселенной должны демонстрировать подобное поведение. Источник: astronews.ru

__________________________________________________________________________

Как просверлить отверстие в бетоне.

Не всегда удается просверлить отверстие в бетонной стене, даже если используется победитовое сверло. Дело в том, что бетонная стена на четверть состоит из камней и прутьев арматуры. Просверлить бетонную стену без навыков и умений очень не просто, но всё-таки можно. 
Инструкция.
1.Нужно ударом пробойника разбить камни, а арматуру просверлить обычным сверлом. Если вы не имеете под рукой победитового сверла, то не расстраивайтесь – вам подойдёт обычный пробойник, который есть во многих строительных наборах. Вставляем его в дрель и сверлим бетонную стену.                                                                                           2.Твердосплавное сверло можно затачивать асимметрично. Такое сверло будет сверлить намного быстрее. Перед тем как делать отверстие в бетонной стене, нужно сверлом с обычной заточкой сделать метку. Хорошо пробивает бетонную стену пробойник, который сделан из сверла, имеющего диаметр 6-8 миллиметров. Его конец нужно заточить в форме ласточкина хвоста. По сверлу нужно постоянно наносить удары и поворачивать. Чтобы пробить отверстие с помощью такого инструмента, потребуется всего несколько минут. 
3. Когда вы сверлите отверстие в бетоне, нужно периодически смачивать сверло водой. Срок его службы при этом продлевается. Чаще всего в качестве резервуара используют эластичный пластмассовый флакон. 
4. Будьте осторожны при сверлении отверстий в потолке: крошки штукатурки будут лететь вам в глаза, за ворот одежды, под рукава. Для того чтобы этого не произошло, нужно сделать из прозрачной полиэтиленовой пленки воронку. Данную воронку нужно просто надеть на дрель. 
5. При установке люстры часто приходится делать отверстие в потолке, чтобы потом установить металлический крючок. Для того чтобы не осыпалась штукатурка, нужно воспользоваться резиновым мячом. Его нужно разрезать пополам, проделать в одной из половинок отверстие и надеть ее на пробойник или шлямбур.

________________________________________________________________________

Соседняя галактика химически бедна?

По оценкам ученых, которые исследовали соседнюю к нам галактику, соседняя карликовая галактика, известная как Большое Магелланово Облако (LMC), является химически примитивным местом. 
В отличие от Млечного пути, эта полуспиральная галактика имеет несколько десятков миллиардов звезд в своем составе, однако несмотря на это, она испытывает недостаток в химических элементах и соединениях. Особенно эта галактика бедна на такие тяжелые элементы, как углерод, кислород и азот. В то же время наш Млечный Путь как раз изобилует подобными элементами. Предыдущие наблюдения за Большим Магеллановым Облаком подтверждают это предположение, в частности указывая на малое количество углеродистых соединений.
Однако астрономические наблюдения за этой галактикой были выполнены при помощи телескопа ALMA. Они продемонстрировали удивительно четкие химические следы сложных органических молекул метанола, этана и метила. А это самые сложные молекулы, когда-либо обнаруженные за пределами нашей собственной галактики. 
«Даже при том, что Большое Магелланово Облако — один из наших самых близких галактических компаньонов, мы думаем, что оно должно разделить химический состав с отдаленными, молодыми галактиками ранней Вселенной» — заявили МартСевило, астроном из Центра Космических Полетов имени ГоддардаNASA) в Гринбелте. 
При всем этом, данная галактика имеет не такой уж и бедный химический состав, как может показаться на первый взгляд. Источник: infuture.ru

___________________________________________________________________________

Самое сильное магнитное поле на Солнце нашлось там, где не ждали.

По результатам наблюдения одной из групп солнечных пятен японские астрофизики обнаружили маленькую (около 1000 км в диаметре) светлую область на поверхности Солнца, магнитное поле в которой составляет 6250 Гаусс. Это одно из самых сильных полей, зарегистрированных на Солнце за всю историю измерений (110 лет), и самое сильное из достоверно определенных. Но интереснее всего то, что эта область формально находится вне солнечного пятна — то есть там, где столь сильное поле ожидалось меньше всего. 
Солнце, как и любая «обычная» звезда (а мы не будем говорить о всякой экзотике вроде нейтронных звезд или белых карликов), — это гигантский самогравитирующий шар горячей плазмы. Плазма, в свою очередь, — это газ с преимущественным содержанием заряженных частиц (электронов, ионов и т. п.). В горячей плазме эти частицы движутся с очень большими скоростями. Как известно из основ электродинамики, там, где есть движущиеся заряженные частицы (то есть, по сути, электрический ток), есть и магнитное поле. И чем быстрее движется заряд — тем сильнее поле. Поэтому естественно, что магнитные поля являются неизменными спутниками жизни звезд, и в частности Солнца. Более того, эти поля управляют многими проявлениями активности звезд: вспышками, выбросами вещества, образованием пятен. 
Солнце обладает крупномасштабным дипольным магнитным поле, медленно «закручивающимся» вокруг нашей звезды из-за ее вращения и в конечном итоге меняющим свои полюса примерно раз в 11 лет (физика этого процесса ясна еще не до конца, но он порождает знаменитый цикл солнечной активности). Индукция (грубо говоря, сила) этого поля на поверхности Солнца в среднем составляет около 1 гаусс. Это сравнимо с магнитным полем на поверхности Земли. В этом смысле Солнце, как звезда, — далеко не самая «замагниченная». Поля так называемых «магнитных звезд» в тысячи и десятки тысяч раз сильнее. Но в отдельные моменты времени в отдельных областях поверхности нашего светила магнитные поля могут возрастать на порядки, что приводит к вспышкам и вызывает корональные выбросы массы. Эти быстрые потоки плазмы возмущают межпланетное магнитное поле, а достигая магнитосферы Земли, вызывают полярные сияния, магнитные бури и прочие явления, влияющие на жизнь людей. Поэтому изучение магнитных полей Солнца — одновременно и прикладная задача, и, конечно же, чисто научная. Кроме того, на примере Солнца можно также в деталях изучать магнетизм похожих на него звезд. 
Темные пятна на поверхности Солнца — еще одно из проявлений локального усиления магнитного поля звезды. Систематически наблюдаемые вот уже более 400 лет, солнечные пятна — в некотором роде не более чем оптическая иллюзия: не такие они уж и темные на самом деле. Пятна — это области фотосферы Солнца с пониженной температурой. В среднем поверхность Солнца разогрета примерно до 6000 K, а вот пятна «остыли» до ~4500 K. Как известно, светимость нагретого тела меняется как четвертая степень его температуры (см. Законы теплового излучения). Отсюда и получается, что пятна выглядят примерно в 3 раза более тусклыми, а на контрасте с ярким окружением — почти черными. 
При чем здесь магнитное поле? Базовая картина возникновения солнечных пятен на данный момент выглядит следующим образом. Пятна получаются там, где силовые линии крупномасштабного магнитного поля как бы всплывают из-под поверхности Солнца, образуя компактную особенность — петлю (рис. 1). Линии магнитного поля в основаниях петли собраны в плотные пучки, что эффективно усиливает поле в этом месте до 3–4 тысяч гаусс. Столь сильное поле препятствует подводу тепла из внутренних областей Солнца к поверхности тем, что частично подавляет конвекцию вещества: в основании петли плазма остывает и наблюдается как пятно (рис. 2). Отсюда же понятно, что пятна возникают парами и имеют разную полярность — северную или южную — в зависимости от того, как направлены в них линии локального магнитного поля (соответственно, из поверхности или в поверхность звезды).
Впервые магнитное поле Солнца было обнаружено и достоверно измерено в 1908 году американцем Дж. Хэйлом и как раз в одном из пятен. Тогда величина поля оказалось равной 2 килогаусс, что в 2–4 тысячи раз больше, чем магнитное поле Земли (но почти в 10 раз меньше, чем поле современного аппарата магнитно-резонансной томографии, примерно в 50 раз меньше самых сильных полей, создаваемых человеком, и в миллиарды раз меньше полей некоторых нейтронных звезд). 
Наблюдение за солнечными пятнами и изучение их магнитных полей — одна из повседневных задач современной гелиофизики. Этим занимается в том числе и японская космическая обсерватория Hinode, выведенная на орбиту еще в 2006 году. В феврале 2014 года с ее помощью наблюдали одну из пар пятен, видимых тогда на Солнце. Авторы исследования — сотрудники японской Национальной астрономической обсерватории Такенори Окамото и Такаси Сакураи . Они и представили свои результаты в статье, опубликованной в журнале The Astrophysical Journal Letters.
Ученые провели спектральные наблюдения пары пятен, позволившие измерить величину магнитного поля в разных ее частях. В центре большего пятна поле оказалось примерно в 4 тысячи раз больше, чем в среднем по Солнцу (то есть около 4 килогаусс). Это было вполне ожидаемо. Однако в светлой области между пятнами индукция оказалась еще больше и составила рекордные 6250 Гаусс. И вот это уже было сюрпризом. К слову, в 2013 году немецкие исследователи уже отчитывались о возможном обнаружении поля в 7 килогаусс в полутени солнечного пятна (M. van Noort et al., 2013. Peripheral downflows in sunspot penumbrae). Но это была всё же часть самого пятна, и полученная оценка была скорее косвенной. 
Эффект Зеемана.
У ученых есть метод практически прямого измерения магнитных полей Солнца и других звезд «на расстоянии». Правда, для его обоснования приходится обращаться к квантовой теории. Хотя идея здесь довольно простая. Напомним, что атомы каждого химического элемента обладают уникальным (по сравнению с другими элементами) набором дискретных энергетических уровней, которые могут быть заняты одним или несколькими электронами. Если электрон в атоме переходит с «верхнего» уровня на «нижний», то разница их энергий излучается в форме фотона (кванта света). Верно и обратное: атом способен поглотить фотон определенной энергии, «перебросив» один из своих электронов на уровень повыше. Последний процесс порождает линии поглощения в спектрах звезд и позволяет нам рассуждать об их химическом составе. 
Однако, если атомы поместить во внешнее магнитное поле, то можно сказать, что произойдет дополнительное расщепление его энергетических уровней: их станет больше. Что, с точки зрения наблюдателя, приводит к возникновению и дополнительных (расщепленных) линий в их спектре. Причем чем сильнее будет внешнее поле, тем сильнее будет и расщепление. Это — проявление так называемого эффекта Зеемана, открытого голландцем Питером Зееманом еще в 1896 году. И именно благодаря ему ученые могут измерить магнитное поле внутри конкретного солнечного пятна либо рядом с ним. Конкретно в обсуждаемой работе исследовались линии нейтрального атома железа. 
Главная проблема в том, что в светлой области между пятнами конвекция почти не подавлена и, казалось бы, сильного поля там быть не может. Поэтому авторам пришлось искать дополнительное объяснение этому парадоксу. Выглядит оно, в их представлении, следующим образом. Каждое солнечное пятно порождает радиальный поток плазмы, который со скоростью в несколько километров в секунду движется от центра пятна во внешние области. Это наблюдательный факт, называемый эффектом Эвершеда. Детали его еще не до конца прояснены, но вероятнее всего он связан с изменением наклона линий магнитного поля: вдали от центра пятна линии из вертикальных становятся горизонтальными и как бы стелются по поверхности звезды. 
Поток Эвершеда существует как у северного, так и у южного пятна, но у одного из них он может оказаться сильнее. Тогда он способен немного прижать линии поля на границе соседнего пятна, от чего плотность энергии поля, а вместе с ней и величина самого поля должны существенно увеличиться. Это и есть идея, которая, в целом, объясняет полученные данные.
Интересно, что рецензент статьи, как указывают авторы в одном из примечаний к тексту, предложил и другую возможную интерпретацию: усиление поля в изучаемой области произошло из-за явления пересоединения (наложения) силовых линий магнитного поля (см. статью «Загадка солнечных вспышек»). При этом детально такая версия в статье не обсуждается. 
В любом случае, полученные наблюдательные данные накладывают дополнительные ограничения на структуру и силу потоков вещества, наблюдающихся внутри пар солнечных пятен, — в том числе и потока Эвершеда, физика которого, напомним, еще до конца не ясна. Любая модель, описывающая эти потоки, теперь должна допускать образование полей, по силе не уступающих обнаруженному. А глубокое понимание физики солнечных пятен — это, в конечном итоге, понимание многочисленных эруптивных процессов происходящих на Солнце, влияющих на нашу глобально электрифицированную цивилизацию всё больше и больше. Источник: elementy.ru
________________________________________________________________________

Малоизвестные факты о Солнце.

Солнце – «сердце» Солнечной системы, и вокруг него вращаются планеты и спутники. Учёные утверждают, что достаточно хотя бы немного изменить массу солнца или его размеры, и жизни на нашей планете просто бы не существовало. 
1. Солнце действительно большое.
На самом деле, Солнце составляет более 99,8% от общей массы Солнечной системы. Это не ошибка — все планеты, их спутники и все другие мелкие космические объекты составляют менее 0,2% от массы Солнечной системы. Если быть более точным, то масса Солнца составляет около двух нониллионов килограммов (это два и тридцать нулей после). По объему Солнце примерно составляет 1,3 миллиона планет, равных Земле.
На самом деле, масса Солнца довольно часто используется в астрономии в качестве стандартной единицы измерения для больших объектов. Когда речь идет о звездах, туманностях или даже галактиках, то астрономы часто используют сравнение с Солнцем, чтобы описать их массу.
2. По галактическим масштабам Солнце не особенно большое.
Хотя только что речь шла о том, что Солнце действительно очень большое, но это только по сравнению с другими объектами в Солнечной системе. Во Вселенной же есть намного более массивные вещи. Солнце классифицируется как звезда G-типа, которую, как правило, называют желтым карликом.
Как следует из названия, есть гораздо более крупные звезды, классифицируемые как гиганты, сверхгиганты и гипергиганты. Красный сверхгигант Uy Щита находится в 9 500 световых годах от Земли. В настоящее время это самая большая известная звезда с диаметром приблизительно в 1700 раз больше, чем у Солнца. Ее окружность составляет 7,5 миллиарда километров. Даже свету нужно почти семь часов, чтобы обогнуть звезду. Если бы Uy Щита находилась в Солнечной системе, то поверхность звезды заходила бы за орбиту Юпитера.
3. Что произойдет, когда Солнце умрет.
Звезды могут жить очень долго, целые миллиарды лет, но в конце концов они тоже умирают. Дальнейшая судьба звезд зависит от их размера. Остатки более мелких звезд превращаются в так называемых коричневых карликов. Массивные звезды умирают более бурно — они превращаются в сверхновые или даже гиперновые и коллапсируют в нейтронную звезду или черную дыру. В редких случаях эти гиганты могут даже взорваться, после чего произойдет гамма-всплеск.
Солнце находится где-то посередине — оно не взорвется, но и не сдуется. После того, как в Солнце закончится водородное топливо, оно начнет рушится само в себя под действием собственного веса, в результате чего ядро станет более плотным и более горячим. Это приведет к расширению Солнца, которое станет красным гигантом. В конце-концов, оно сожмется до белого карлика — крошечного звездного остатка невероятной плотности (размером с Землю, но массой с Солнце).
4. Из чего состоит Солнце.
В основном оно состоит из водорода и гелия, как и большинство звезд. Если быть более точным, то это около 71% водорода, 27% гелия, а остальные 2% приходятся на следовые количества десятков химических элементов, в основном, кислорода и углерода.
5. Насколько Солнце горячее.
Температура Солнца действительно зависит от того, о какой части Солнца говорить. Ядро Солнца безумно горячее — температура там достигает 15 миллионов градусов по Цельсию. В хромосфере же температура всего лишь несколько тысяч градусов. Тем не менее, температура быстро растет до миллионов градусов во внешнем слое Солнца, короне. Почему это так — ученые точно не знают.
6. Сколько лет Солнцу.
Возраст Солнца составляет около 4,6 миллиарда лет. Его возраст был рассчитан, исходя из возраста других вещей в Солнечной системы, которые можно датировать более точно, такие как метеориты или даже горные породы Земли. Естественно, это верно при предположении, что Солнечная система образовалась как единое целое.Срок жизни звезды G-типа составляет от 9 до 10 миллиардов лет.
7. Насколько яркое Солнце.
Сириус А гигантский, а яркая звезда Сириус В (справа) гораздо меньше по размеру. Очевидно, что Солнце является самым ярким на дневном небе, поскольку оно гораздо ближе к Земле, чем любая другая звезда. На ночном же небе самой яркой звездой является Сириус. Второй по яркости — Канопус.
Видимая звездная величина — термин, используемый для обозначения яркости небесного объекта с Земли. Солнце имеет кажущуюся величину -27.
8. Как быстро вращается Солнце.
Вращение Солнца немного сложно просчитать, поскольку оно меняется в зависимости от региона. Если говорить коротко, без объяснения, то Солнце делает полный оборот примерно за 25,4 дней.Солнце на самом деле не вращается как твердое тело, подобное Земле. Оно быстрее всего вращается на экваторе (24,5 дней) и медленнее возле полюсов (38 дней).
Что касается скорости Солнца во Вселенной, то вся Солнечная система вращается по орбите вокруг центра Млечного Пути со скоростью 828 000 км/ч. Один полный оборот, известный как галактический год, занимает примерно 225 — 250 миллионов земных лет.
9. Что такое солнечные пятна?
Иногда на поверхности Солнца можно наблюдать темные пятна, известные как солнечные пятна. Они имеют более низкую температуру (примерно на 1226 градусов Цельсия), чем остальная часть солнечной поверхности и появляются из-за колебаний магнитного поля Солнца. Некоторые из них могут быть достаточно большими, чтобы их можно было увидеть невооруженным глазом. Иногда появляются группы из более чем 100 солнечных пятен одновременно. Тем не менее, это случается чрезвычайно редко.
10. Солнце меняет свое магнитное поле.
Каждые 11 лет Южный и Северный магнитные полюса меняются местами. На Земле также происходит подобное, но гораздо реже. В последний раз это произошло около 800 000 лет назад.
Мой электронный адрес

Если кто хочет со мной связаться, или есть какие то предложение, информации. Об пожеланиях, ошибках и.т.д.. Пишите, вот моя электронная почта:
alavka907@gmail.com

Свежие записи
Июль 2018
Пн Вт Ср Чт Пт Сб Вс
« Июн   Авг »
 1
2345678
9101112131415
16171819202122
23242526272829
3031  
Архивы

Июль 2018
Пн Вт Ср Чт Пт Сб Вс
« Июн   Авг »
 1
2345678
9101112131415
16171819202122
23242526272829
3031