20.09.2018

PostHeaderIcon 1.У бактерий обнаружили новый вид памяти.2.Ученые нашли на Марсе лед.3.Астрономы решили одну из загадок коричневых карликов.4.Физики уточнили максимальное значение заряда нейтрона.5.Дома для нуждающихся напечатают за 12-48 часов.6.Генная инженерия…7.Магнитное поле галактик может иметь упорядоченную структуру.

У бактерий обнаружили новый вид памяти.

Бактерии, несмотря на свое достаточно простое устройство, доставляют немало проблем человеку. К примеру, так нелюбимая врачами синегнойная палочка pseudomonas aeruginosa, являющаяся источником крайне опасных внутрибольничных инфекций из-за своей высокой устойчивости к антибиотикам, недавно преподнесла новый сюрприз. Группа ученых из Калифорнийского университета в Лос-Анджелесе выяснила, что эти бактерии опаснее, чем мы думали. 
Как известно, синегнойные палочки способны образовывать биопленки, защищающие их от внешнего воздействия. Кроме того, эти микроорганизмы отличает высокая степень активности. Благодаря особым химическим реакциям и способности передавать сигналы, колонии могут координировать поведение друг с другом и передавать информацию о вредных воздействиях другим бактериям для того, чтобы те «успели подготовиться». 
Группа исследователей под руководством доктора Джерарда Вонга, изучая процесс формирования биопленки, обнаружила способность отдельных представителей колоний «запоминать» этот процесс. Дело в том, что на начальном этапе формирования пленки (который длится порядка 20 часов), клетки бактерий плохо удерживаются на поверхности пленки и прикрепляются к ней. Около 95% клеток удерживаются не дольше 30 секунд, что замедляет передачу сигнала между клетками колонии. Однако это касается лишь новой колонии. Когда ученые отобрали бактерии, которые живут уже на сформированной пленке, и пересадили на новую стерильную поверхность, те закреплялись и формировали пленку в несколько раз быстрее, как будто они «помнили» свой предыдущий опыт. 
«Мы отметили скоординированные колебания между количеством сигнальных молекул в клетках и активностью подвижных белковых структур на их поверхности. Они проявлялись у последующих поколений как новая форма «памяти». Это играет ключевую роль в снижении их подвижности и в необратимом закреплении на субстрате, в образовании биопленки и передаче информации».

_________________________________________________________________________

Ученые нашли на Марсе лед там, где его не должно быть. 

Тщательный анализ данных со старейшего, но по-прежнему функционирующего марсианского орбитального спутника аэрокосмического агентства NASA привел к результатам, которых ученые совсем не ожидали: Красная планета скрывает водный лед там, где его не должно быть. 
Повторная проверка данных, полученных с зонда Mars Odyssey, открыла наличие внушительного запаса водного льда, находящегося под поверхностью марсианского экватора. Но если учитывать наши знания о климате этой планеты, то этот элемент там явно «лишний». 
Переоценку данных проводила группа ученых под руководством планетолога Джека Уилсона из Университета Джонса Хопкинса. Исследователи проанализировали данные, собранные с помощью нейтронного спектрометра зонда «Одиссей», который показал наличие водорода близ поверхности Марса. Одной из ключевых задач зонда как раз является поиск воды на Красной планете, однако ввиду особенности орбиты, высота которой иногда достигает 3800 километров над поверхностью планеты, зонд не в состоянии напрямую провести нужные измерения. Однако индикатором ее наличия явился водород. Его уровень зонд напрямую измерять тоже не может, он лишь способен определять его наличие, исходя из данных о нейтронах, которые он может обнаружить, когда частицы космического излучения сталкиваются с атомами марсианской поверхности. 
Такая вот особенность позволила «Одиссею» обнаружить скрытый водный лед на Красной планете еще в 2002 году, однако на тот момент данные указывали на то, что открытие в основном было связано с полюсами планеты. И это оказалось вполне оправдано, потому что ученые всегда считали, что вокруг экватора Марса лед не в состоянии надолго задерживаться в грунте, так как температурные условия в этом регионе явно говорят о том, что он должен сублимироваться (испаряться) в атмосферу. 
Используя метод Байесовской вероятности, ученые провели реконструкцию изображений регионов, чтобы получить более полную картину обнаружения «Одиссеем» вышеупомянутых нейтронов. В результате исследователи обнаружили наличие предполагаемых и ранее не обнаруженных водохранилищ, включая те, что находятся в широтах экватора планеты. 
«Это то же самое, как если бы мы опустили космический аппарат почти на половину текущей высоты и увидели несколько новых вещей на поверхности, которые были невидимы до этого», — рассказал Уилсон порталу New Scientist. 
«Нам было и раньше известно о том, что лед может скрываться под поверхностью на полюсах планеты. Мы также видели небольшие отложения рядом с экватором». 
Это очень важное открытие, так как оно увеличивает потенциал пригодности планеты к той же колонизации, за счет более распространенного наличия нужных ресурсов. Но перед тем, как собственно туда лететь, нужно кое-что выяснить. А именно каким образом этот лед там оказался. 
Сам Уилсон предполагает, что Марс когда-то в своем прошлом мог обладать осью вращения, которая была сильнее наклонена по отношению к ее нынешнему положению. Команда исследователей считает, что если ось Красной планеты несколько миллионов лет назад была отклонена на 20 градусов больше по отношению к нынешнему расположению, то вполне вероятно, что находящийся на полюсах лед мог сублимироваться в атмосферу, после чего в конечном итоге перераспределился в этих водохранилищах, находящихся в более низких широтах. 
Тем не менее ученые понимают, что другие объяснения этому явлению могут быть более вероятными. Например, марсианский грунт обладает некими свойствами, позволяющими водному льду находиться под поверхностью и противостоять испарению. 
В общем, чтобы выяснить этот вопрос наверняка и решить, какая из этих гипотез наиболее вероятна, потребуется провести дополнительные исследования. Однако становится ясно, что время от времени к старым исследованиям возвращаться тоже необходимо – а вдруг пропустили чего интересного? 
«Это очень удивительный пример того, как собранные когда-то данные можно проанализировать повторно, используя новые методы и технологии», — комментирует планетный геолог Джим Хед из Брауновского университета, не принимавший участие в описываемом исследовании.

___________________________________________________________________________

Астрономы решили одну из загадок коричневых карликов.

Тусклые астрономические объекты, называемые коричневыми карликами, менее массивны, чем наше Солнце, но при этом более массивны нашего газового гиганта Юпитера. Они обладают атмосферой с мощными ветрами и массивными облаками пятнистой формы и состоящими в основном из капель расплавленного железа и силикатной пыли. Недавно было установлено, что эти гигантские облака могут очень быстро (менее чем за один земной день) скапливаться и так же быстро рассеиваться. Но при этом исследователи не понимают, почему это происходит. 
В рамках же нового анализа данных, собранных с помощью космического телескопа «Спитцер», международная группа ученых смогла создать модель, объясняющую, как именно облака коричневых карликов двигаются и изменяют свою форму. Создаваемые этими объектами гигантские волны запускают очень масштабное движение частиц в атмосфере коричневых карликов, изменяя толщину силикатных облаков. Об этом ученые сообщили на страницах журнала Science. В отчете также предполагается, что эти облака скапливаются вместе на разных высотах, двигаясь с разной скоростью и направлением. 
«Мы впервые наблюдали атмосферные потоки и волны у коричневых карликов», — отметил автор исследования Даниеэль Апаи, доцент кафедры астрономии и планетологии Аризонского университета. 
Волны могут формироваться не только на воде, как, например, в наших морях и океанах, но и в атмосфере планет. Если брать нашу планету, то очень длинные волны смешивают холодный воздух полярных регионов с воздушными массами средних широт, что чаще всего приводит либо к появлению, либо рассеиванию облаков. 
Распределение и движение облаков у коричневых карликов, ставших объектами данного исследования, оказались наиболее похожими на те, что ученые наблюдали на Юпитере, Сатурне и Нептуне. Последний тоже обладает несколькими воздушными потоками, которые двигаются в противоположном направлении, но состоят они в основном изо льда. Наблюдение за Нептуном с помощью космического телескопа «Кеплер» стало ключевым в этом сравнении между планетами и коричневыми карликами. 
«Атмосферные ветра коричневых карликов очень похожи на юпитерианские пояса и зоны, нежели на хаотические атмосферные формирования, наблюдаемые на Солнце и многих других звездах», — добавляет соавтор исследования Марк Марли из Исследовательского центра Эймса NASA. 
Коричневые карлики можно рассматривать как неудавшиеся звезды, так как их масса слишком мала, чтобы поддерживать химические реакции элементов в их ядрах. Но их также можно рассматривать и как «суперпланеты», так как они массивнее Юпитера, но при этом обладают приблизительно тем же диаметром. Как и газовые гиганты, коричневые карлики в основном состоят из водорода и гелия, однако они довольно часто встречаются за пределами какой-либо планетарной системы. А в 2014 году, в рамках исследования, проводившегося с применением космического телескопа «Спитцер», ученые выяснили, что на коричневых карликах довольно часто бушуют атмосферные шторма. 
Благодаря своей похожести с гигантскими экзопланетами коричневые карлики могут являться окном в другие планетарные системы. При этом эти объекты гораздо проще изучать, потому что они, как правило, не имеют рядом с собой настоящих ярких звезд, затрудняющих наблюдение за ними, как это часто бывает с экзопланетами. 
«Вполне возможно, что те атмосферные потоки и волны, которые мы обнаружили у коричневых карликов, будут таким же частым явлением для более обычных гигантских экзопланет», — добавляет Апаи. 
Используя «Спитцер», ученые проводили наблюдение за изменением светимости шести коричневых карликов в течение почти полутора лет, став свидетелем 32 оборотов вокруг своей оси каждого из них. По мере вращения коричневого карлика его облака то появляются, то исчезают в том полушарии, за которым ведется наблюдение в телескоп, что изменяет его яркость. Благодаря этому ученые смогли проанализировать эти световые изменения, чтобы выяснить, каким образом происходит распределение силикатных облаков в атмосфере таких объектов. 
Ранее ученые предполагали, что у коричневых карликов будут иметься эллиптические шторма, похожие на Большое красное пятно Юпитера, вызываемое и поддерживаемое зонами высокого давления. Пятно находится на Юпитере вот уже сотню лет и за это время мало изменилось. Но подобные «пятна» не могут объяснить такие быстрые изменения в яркости, которые наблюдали ученые при изучение коричневых карликов. Отмечаемые изменения происходили менее чем за одни земные сутки. 
Чтобы докопаться до истины, ученым пришлось пересмотреть свое предположение. И лучшей моделью, которая объясняла бы подобное поведение и резкие изменения в светимости, оказалась та, что описывает огромные атмосферные волны, проявляющиеся с разным интервалом. Эти волны заставляют атмосферные потоки вращаться в противоположные стороны. Суперкомпьютер и новый компьютерный алгоритм помогли исследователю Аризонского университета Теодоре Каралиди создать карту движения облаков у коричневых карликов. 
«Когда пики двух волн смещены, в течение дня наблюдается две точки максимальной яркости. Когда волны синхронизируются, получается один пик яркости (одна волна), который делает коричневые карлики в два раза ярче», — объясняет Каралиди. 
Эти результаты полностью объясняют странное изменение в яркости, которое наблюдали ученые до этого при изучении коричневых карликов. Следующим шагом будет попытка лучше понять, что именно создает волны, которые запускают движение атмосферных масс этих объектов.

__________________________________________________________________________

Физики уточнили максимальное значение заряда нейтрона.

Исследователи из Франции и Германии измерили заряд ультрахолодных нейтронов, помещая их в сильное электрическое поле и заставляя отражаться от цилиндрического зеркала. В результате физики получили значение q ≈ (−0,3 ± 3,7) × 10−20e, которое сравнимо с другими экспериментами по определению заряда нейтрона и может быть легко уточнено в дальнейшем. Статья опубликована в Physical Review D. 
В рамках школьного курса физики учат, что электрический заряд квантуется. Другими словами, заряд любой элементарной частицы и любого физического тела вообще должен быть кратен вполне определенному значению, равному одной трети от заряда электрона. При этом наименьшим возможным зарядом обладают кварки, которые не могут существовать в виде свободных частиц из-за конфайнмента, поэтому для удобства квантом электрического заряда можно считать заряд электрона, примерно равный e = −1,6 × 10−19 кулонов. 
Тем не менее, до сих пор физики не вполне понимают, с чем связано такое поведение. В 1948 году Поль Дирак предложил объяснить этот эффект, вводя в теорию магнитные монополи, однако ни в квантовой электродинамике, ни в Стандартной модели, нет механизмов, которые должны вызывать квантование заряда. Поэтому некоторые ученые считают, что в действительности заряд может меняться непрерывно, и проводят эксперименты по поиску таких изменений. В частности, наиболее чувствителен к таким изменениям будет нейтрон, который в обычных условиях зарядом не обладает, а потому не может вступать в электрические взаимодействия, — однако при отсутствии квантования частица может приобрести небольшой заряд, который удастся измерить на практике. На данный момент различные эксперименты ограничивают заряд нейтрона величиной порядка q ~ 10−20e. 
В этой статье группа ученых под руководством Кристиана Плонка приводит результаты нового измерения заряда нейтрона, точность которого немного превышает точность предыдущих экспериментов. Чтобы измерить заряд, исследователи накладывали на систему внешнее электрическое поле и следили, как пучок ультрахолодных нейтронов — нейтронов с энергией не выше 300 наноэлектронвольт, то есть со скоростью не больше 7,6 метров в секунду — отражается от цилиндрического зеркала. Если бы частицы действительно имели небольшой электрический заряд, поле изменяло бы их траекторию, причем немного по-разному для частиц, отраженных от зеркала под различными углами. Поэтому по величине отклонений можно судить о величине заряда нейтронов. 
Предложенная физиками схема экспериментальной установки выглядела следующим образом. Полученные на установке PF2 Института Лауэ-Ланжевена в Гренобле ультрахолодные нейтроны запускались в установку вдоль ее оси, отражались от зеркала, возвращались и регистрировались детектором, расположенным поблизости от точки запуска. Из-за небольшой скорости на движении частиц сказывалась сила притяжения Земли, а потому исследователи налили внизу установки масло (liquid Fomblin), которое отражало вверх падающие нейтроны. Наконец, ученые накладывали на систему электрическое поле напряженностью около миллиона вольт на метр, и периодически изменяли его направление каждые 200 секунд, чтобы исключить систематические ошибки, которые приводили бы к смещению распределения зарегистрированных нейтронов. Кроме того, ученые откалибровали установку, прежде чем проводить измерения, чтобы снизить влияние фоновых частиц. 
В результате после 840 циклов измерений исследователи получили, что среднее отклонение нейтронов составляет примерно Δx ≈ −5 ± 1 микрон, что отвечает заряду не более q ≈ (−2 ± 1) × 10−19e. Это ограничение оказалось слабее результатов предыдущих экспериментов. Тем не менее, в дальнейшем ученые заметили, что на это значение оказывают влияние систематические погрешности, возникающие из-за того, что при наложении сильного электрического поля свойства масляного зеркала изменяются, и это приводит к дополнительному горизонтальному смещению отраженных от поверхности частиц. Оценивая величину этого эффекта и учитывая его при обработке данных, ученые получили более точное ограничение на величину заряда нейтрона, которое составило примерно q ≈ (−0,3 ± 3,7) × 10−20e. При этом чувствительность установки примерно равна δq ≈ 1 × 10−21e и должна повышаться со временем как корень квадратный от числа измерений, что позволяет в будущем получить гораздо более точный результат.

_________________________________________________________________________

 

Дома для нуждающихся напечатают за 12-48 часов.

Как решить вопрос с трущобами? Могут ли их жители мечтать о нормальных условиях жизни? В американском городе Остин прошла технологическая выставка SXSW, на которой выдвинули предложение обеспечить развивающиеся страны финансово доступным и быстрым жильём. 
В рамках фестиваля SXSW был представлен проект по обеспечению развивающихся стран быстровозводимыми жилыми домами, строящимися из бетона с помощью 3D-принтеров. Чтобы напечатать дом 60 кв. м, потребуется примерно двое суток. Стоимость такой постройки обойдётся примерно в $10 000. Организаторы данного проекта заверяют, что в перспективе процесс стройки будет занимать от 12 часов до 48, так как роботизированный 3D-принтер планируют усовершенствовать, а затраты на смесь оптимизировать и снизить до $4 000. 
Принцип действия: роботизированный 3D-принтер передвигается вдоль металлической основы-короба, заливая её специальным раствором. Таким образом и возводится стена. С помощью программного обеспечения создаются чертежи, по которым и работает система. Плюс в том, что будущие хозяева будут иметь возможность создать дом таким, как им хочется прямо на месте или выбрать что-то из готовых вариантов. После печати бетонной коробки, строители (в будущем — роботы и дроны) устанавливают окна, входную дверь, крышу, базовую сантехнику и электропроводку. И всё это за выполняется указанный промежуток времени. 
Данный проект запустили некоммерческая организация New Story, помогающая обеспечивать жильём развивающиеся страны и строительная компания Icon. Без крыши над головой находятся больше миллиарда человек на планете. Проекты по созданию быстрого и недорого жилья созданы для тех, кто не имеет возможности переселиться из трущоб в нормальное жильё. Исполнительный директор компании New Story Бретт Хаглер заявил о том, что для него и их сотрудников слишком безответственно ничего не предпринимать в такой ситуации. 
Проект стартует в Сальвадоре уже в текущем году: для начала возведут несколько экспериментальных домов, они заложат основу коммуны из ста домов. Реализация основного плана намечена на 2019 год. Финансирование происходит в основном за счёт средств Силиконовой долины. Планируется, что семьи смогут приобретать дома в ипотеку без процентов, выплачивая по 30$ в месяц на протяжении 10 лет. Для бедных районов Сальвадора это более чем подъёмная сумма, так как средняя заработная плата здесь составляет 360$ в месяц. В случае успеха, подобные строения будут возведены и в других регионах.

________________________________________________________________________

Генная инженерия возвратит полностью утраченное зрение.

Современная офтальмология позволяет устранять определённые дефекты зрения: от дальнозоркости или близорукости до амблиопии, синдрома «ленивого глаза». Однако для людей, полностью утративших зрение, проблема казалась неразрешимой. Разработки российских учёных показали, что используя генную инженерию, появляется возможность преодолеть и слепоту. 
Инновационную технологию предложила группа специалистов из МГУ, Института биоорганической химии РАН и Института высшей нервной деятельности и нейрофизиологии РАН. Идея метода заключается в использовании генной модификации для отдельных клеток глаза, отвечающих за создание светочувствительного белка. «Транспортировку» гена в клетку осуществляет специальной вирус, искусственно лишенный способности размножаться. 
Новую методику описал руководитель проекта, нейрофизиолог Павел Балабан. Он рассказал, что учёным удалось «подсадить» в клетку ген, синтезирующий светочувствительный белок. В результате любая клетка сможет превратиться в светочувствительную. По статистике почти 90% незрячих имеют здоровый, нормально функционирующий глазной нерв. Проблема заключается в отсутствии чувствительности у клеток глаза, на которые попадает отраженное изображение. Восстановление светочувствительности этих клеток вернёт ослепшим людям зрение. 
На данный момент завершена первая стадия тестирования методики. В 2021-2022 годах учёные планируют провести первые клинические испытания генетических исследований по проекту ВЗОР («Восстановление зрения оптогенетическими решениями»).

_________________________________________________________________________

Магнитное поле галактик может иметь упорядоченную структуру, выяснили ученые.

Турбулентные процессы, протекающие в галактиках, приводят к формированию обширных магнитных полей – которые часто имеют упорядоченную структуру в большом масштабе. Эти находки были сделаны астрономами из Рурского университета в Бохуме, Германия, проанализировавшими данные, собранные при помощи современных радиотелескопов. 
«Галактики, такие как наш Млечный путь, представляют собой почти плоские объекты, которые мы часто изображаем как диски, — описывает главный автор исследования, профессор Рурского университета доктор Ральф-Юрген Детмар. – Раньше считалось, что магнитные поля галактик заключены внутри этих дисков». Однако новые данные, полученные группой Детмара при помощи радиотелескопа Jansky Very Large Array, расположенного на территории Северной Америки, не подтвердили этого предположения. Подобно магнитному полю Земли, простирающемуся за пределы планеты далеко в межпланетное пространство, магнитное поле галактик простирается далеко в межгалактическое пространство, выяснили исследователи в своей работе. 
Магнитные поля галактик формируются в результате множества звездных взрывов, эффекты которых длятся в течение сотен миллионов лет. Энергия взрывов всех сверхновых галактики вносит вклад в формирование ее магнитного поля. Учитывая тот факт, что взрывы сверхновых представляют собой хаотические процессы, ученые не ожидали увидеть упорядоченность в крупномасштабной структуре магнитного поля галактики. Однако наблюдения, проведенные командой Детамара, показали как раз такую упорядоченность – по крайней мере в случае некоторых галактик. Механизмы формирования такой упорядоченности пока остаются загадкой для астрономов. Источник: astronews.ru

 

 

Мой электронный адрес

Если кто хочет со мной связаться, или есть какие то предложение, информации. Об пожеланиях, ошибках и.т.д.. Пишите, вот моя электронная почта:
alavka907@gmail.com

Свежие записи
Сентябрь 2018
Пн Вт Ср Чт Пт Сб Вс
« Авг   Окт »
 12
3456789
10111213141516
17181920212223
24252627282930
Архивы

Сентябрь 2018
Пн Вт Ср Чт Пт Сб Вс
« Авг   Окт »
 12
3456789
10111213141516
17181920212223
24252627282930