PostHeaderIcon 1.Как превратить углекислый газ в топливо?2.Падающие в черные дыры «темные» звезды.3.Могут ли ЧД уничтожить Вселенную?4.Ядро Солнца вращается в четыре раза быстрее его поверхности.5.Может ли ткань пространства-времени быть с изъянами? 

Как превратить углекислый газ в топливо?

С каждым годом газы, выделяемые различными заводами, фабриками, да и просто автомобилями все больше загрязняют атмосферу нашей планеты. Для борьбы с вредными выбросами предприятия используют разнообразные фильтры, ведутся разработки электромобилей и придумываются безотходные технологии производства. Но что, если вредные газы можно использовать для производства топлива?
Точно так же рассудили и ученые из Калифорнийского университета в Беркли. Как сообщает издание Science Advances, группе исследователей удалось создать губчатый никель-органический фотокатализатор. Материал собирает углекислый газ из атмосферы и превращает его в монооксид углерода, из которого уже можно получить водородное топливо. Более того, в качестве источника энергии для запуска каскада реакций используется энергия солнечного света. Как сообщил автор исследования Хаймэй Чжэн,
«Активируемый светом материал создаст ценное топливо, превратив углекислый газ в монооксид углерода, а также поможет в борьбе с глобальным потеплением, уменьшив содержание углекислого газа в атмосфере. Наша технология производит почти 100% чистый монооксид углерода без каких-либо примесей вроде водорода и метана. Это очень важно. Ранее ученым не удавалось полностью избавиться от водорода при фотокаталитическом преобразовании углекислого газа».
В ходе испытания новой технологии исследователи определили, что в камере, заполненной углекислым газом, через час при комнатной температуре 1 грамм никель-органического фотокатализатора произвел 400 миллилитров монооксида углерода. Как заявляют ученые, свойства нового вещества позволяют впитывать ядовитые газы, перерабатывать их, а также использовать в качестве резервуара для хранения водородного топлива. По материалам: hi-news.ru

_____________________________________________________________________________________________

Падающие в черные дыры «темные» звезды могут быть источниками быстрых радиовсплесков.

Темная материя, падающая в черные дыры, может быть источником некоторых быстрых радиовсплесков (FRB) – таинственных импульсов радиоволн, случайно обнаруженных 10 лет назад. 
Материя, которую мы видим в космосе – звезды, планеты и газ – составляет лишь около 18 процентов массы Вселенной. Остальное – темная материя, которая невидна и обнаруживается лишь через гравитационное воздействие на обычную материю. 
Никто не знает точно, что такое темная материя, но одна гипотеза заключается в том, что она состоит из пока еще теоретических частиц, называемых аксионами. Эти частицы, если они существуют, должны быть очень легкими и слабо взаимодействовать с другими веществом, окружающим их. 
Однако, в новом исследовании Аичи Ивасаки из Университета Нишогакуши в Токио (Япония) показал, что, поскольку ранняя Вселенная была меньше и давала больше шансов на объединение аксионов, они могли бы собраться вместе и сформировать «аксионные звезды». Эти «темные» объекты сгруппировались бы вблизи центра галактик, и их обнаружение наиболее вероятно возле сверхмассивных черных дыр. 
«Если в центрах галактик много аксионных звезд, мы ожидаем, что некоторые из них столкнутся с аккреционным диском черных дыр», – рассказывает Аичи Ивасаки. 
Магнитное поле диска приведет к распаду некоторых аксионов на отдельные фотоны, которые затем будут видны на Земле в виде FRB. Этот механизм может объяснить, почему у некоторых FRB отсутствует периодичность. До сих пор был обнаружен только один повторяющийся всплеск: FRB 121102, расположенный в галактике примерно в 2,5 миллиардах световых лет от Земли. 
Согласно исследованию, повторение радиовсплесков может быть вызвано тем, что аксионная звезда проходит через аккреционный диск черной дыры снова и снова. Она будет делать это с нерегулярными интервалами, пока магнитное поле диска не превратит достаточное количество аксионов в фотоны, и аксионы больше не смогут удерживаться вместе, образуя компактный комок. 
Одна из проблем модели Аичи Ивасаки заключается в том, что он предполагает более сильное взаимодействие аксионов с магнитными полями, чем это предлагается многими другими теориями. Источник: in-space.ru

_____________________________________________________________________________________________

Могут ли черные дыры уничтожить Вселенную? 

Один из сюрпризов, которые выявил Большой адронный коллайдер, заключается в том, что бозон Хиггса оказался немного тяжелее, чем ожидалось, и это несет определенные последствия для структуры нашего вакуума. Вакуум наполняет поле Хиггса, оно дает частицам их массу, а заполненный Хиггсом вакуум, как считается, должен быть стабильным минимумом потенциала Хиггса. Если Хиггс будет значительно тяжелее, как показывают современные данные, у потенциала будет другой минимум на энергиях, которые ниже настоящего вакуума. Значит, вакуум, который нас окружает, это «ложный вакуум» и он метастабилен, не идеален. Наш ложный вакуум в конечном счете распадется на более низкое энергетическое состояние «истинного вакуума», и этот процесс будет сопровождаться выбросом энергии, которая разорвет все связанные на сегодня частицы материи. 
В списке событий, которые заслуживают названия «конец света», «вакуумный распад» идет сразу после «большого сжатия». 
Измерив массу Хиггса и другие параметры, определяющие потенциал, можно подсчитать, сколько времени понадобится нашему вакууму для распада. Ложный вакуум распадается с локального туннелирования в истинный вакуум, затем создает пузырь, который быстро расширяется и наполняет всю Вселенную. Когда симметрия Хиггса была нарушена впервые, произошло что-то похожее, что, возможно, привело к доминированию материи над антиматерией во Вселенной. 
В нашей нынешней Вселенной время, которое необходимо, чтобы произошло туннелирование, зависит от высоты потенциальной стены между истинным и ложным вакуумом, в котором мы сейчас находимся. Оценки показывают, что из того, что мы знаем о времени этого распада, оно должно быть на несколько порядков больше возраста нашей Вселенной. И даже так, если вакуум в конце концов распадется, это случится после того, как звезды сожгут все топливо и жизнь во Вселенной станет невозможной. Причин для волнения в принципе нет. 
Или все-таки есть? 
В одной из последних работ под названием «Вакуумная метастабильность черных дыр», группа ученых из Великобритании и Канады отметила, что оценка скорости распада вакуума не принимает во внимание, что гравитационные поля могут служить семенами-зародышами вакуумного распада и таким образом значительно увеличивать нестабильность существующего вакуума. В своей работе Бурда, Грегори и Мосс рассчитали вероятность того, что ложный вакуум туннелирует в истинный вакуум, и пришли к выводам, что она намного выше в присутствии черных дыр, нежели в их отсутствии. Используя ряд наборов параметров потенциала Хиггса, сопоставимые с существующими данными, они оценили время распада как грубо сравнимое со временем распада черной дыры посредством излучения Хокинга. 
Вероятный процесс туннелирования, который может произойти рядом с черной дырой, зависит от массы черной дыры. Большие черные дыры имеют малую кривизну на горизонте, потому вероятность туннелирования мала, а температура Хокинга низкая. Поскольку черная дыра теряет массу в процессе испарения, температура растет, а вместе с ней и вероятность туннелирования. При большой массе наиболее вероятным состоянием, при котором туннелирует ложный вакуум, будет истинный вакуум с черной дырой, у которой осталось мало массы внутри. Если масса будет достаточно малой, скорее всего, в процессе туннелирования просто возникнет пузырь истинного вакуума. В любом случае истинный ваккум начнет стремительно расти. 
Это говорит о том, что там, где скорость распада вакуума больше темпа излучения Хокинга, вакуум может стать нестабильным вблизи края черной дыры и расшириться внутрь чрезвычайно быстро — когда черная дыра близка к полному испарению. 
Сколько времени понадобится черной дыре, чтобы испариться и стать достаточно малой, чтобы запустить вакуумный распад? Это зависит от начальной массы черной дыры. Чем больше черная дыра, тем больше нужно времени. Все черные дыры, которые мы наблюдали — черные дыры с массой солнца и сверхмассивные черные дыры — настолько тяжелые, что в настоящее время вообще не испаряются — их температура ниже температуры космического микроволнового фона. Они не теряют массу, а растут. 
Тем не менее было предположение, что малые черные дыры могли образоваться в очень юной Вселенной из крупных колебаний плотности. Эти черные дыры называют «первичными» черными дырами, и они могут обладать любой массой сегодня. Если они существуют, некоторые уже испарились или испаряются сейчас. Сигнатуры этих черных дыр пытались найти, но пока не нашли, хотя есть мнение, что короткопериодичные гамма-всплески могут исходить от таких событий. 
Если расчеты нового документа верны, мы можем сделать вывод, что в нашей Вселенной просто не было черных дыр, которые испарились полностью, поскольку в таком случае нас бы больше не было. Поскольку распределение первичных масс черных дыр неизвестно, однако некоторые из них могут быть рядом в финальной стадии испарения, предвещая конец мира, каким мы его знаем. 
Звучит ужасно, и это правда. Но есть и другие аргументы. 
Во-первых, первичные черные дыры, строго говоря, не особо высоко ценятся среди космологов. Причина в том, что трудно найти модель, согласно которой их можно было бы произвести, не произведя много. Для того чтобы образовать их, Вселенная должна была родиться с флуктуацией плотности на 68% плотнее среднего, в то время как первичные флуктуации, которые мы наблюдаем, на 0,003% плотнее среднего. Что еще более важно, параметры потенциала Хиггса, которые входят в скорость распада вакуума, основаны на предположении, что Стандартная модель представляет собой полную теорию вплоть до масштабов, на которых становится актуальной квантовая гравитация. Но это крайне сомнительно. Более того, многие считают, что это вовсе не так. 
Ах да, и как насчет крошечных черных дыр на БАК, которые должны были съесть нашу планету в 2008 году? Нет абсолютно никаких признаков того, что БАК произвел хотя бы одну такую, и сама эта идея кажется весьма сомнительной, хотя исключать ее тоже не стоит. Могут ли эти черные дыры начать вакуумный распад? 
На основе текущих расчетов Бурды и его коллег такой вывод сделать нельзя. Не только потому что эти черные дыры БАК будут с большей размерностью, но и сам вакуум должен быть с большей размерностью, а значит и теория будет отличаться. Кажется невероятным, что микроскопические черные дыры, даже если и будут произведены на БАК, могут быть вредными, по вполне понятным причинам: БАК работает в энергетическом режиме, при котором астрофизические столкновения происходят постоянно. Они не порождали событий, которые были бы беспрецедентными в истории Вселенной. Если теорию Бурды раскрыть, она скорее исключит возможность создания черных дыр на БАК с его энергиями. 
Работа ученых имеет потенциал для развития в очень плодотворной связи между космологией, астрофизикой и экспериментами на коллайдере, которые мы проводим на Земле. По материалам: hi-news.ru

_____________________________________________________________________________________________

Звезда может лишить планеты в обитаемой зоне воды.

Новое исследование, представленное 31 мая 2017 года в журнале Nature Geoscience, наносит ощутимый удар по надежде найти живые организмы за пределами Земли. Джун Ян из Пекинского университета (Китай) со своими коллегами сообщает, что наша планета необычна в своей способности поддерживать воду жидком состоянии. 
Ранее считалось, что далекие миры, вращающиеся вокруг похожих на Солнце светил, в ходе своей эволюции будут проходить через фазу «океанов». Когда молодая звезда ледяной, безжизненной планеты, такой как ранняя Земля, начинает нагреваться и становится похожей на Солнце, она растапливает лед на мирах, вращающихся вокруг нее на определенном расстоянии в так называемой обитаемой зоне. Благодаря такому процессу далекие экзопланеты могут стать пригодными для зарождения и поддержания жизни. Но это в теории и новое исследование ставит ее под сомнение.
В своей работе Джун Ян и его команда использовали климатические модели для симуляции эволюции ледяных планет. Оказалось, что без парниковых газов в атмосфере планеты (особенность Земли) энергия, необходимая для оттаивания замороженного мира, должна быть настолько высокой, что превратит ледяную планету в ад без промежуточной, пригодной для жизни фазы. 
«Мы обнаружили, что потоки энергии, необходимые для преодоления начального состояния снежного шара, настолько велики, что они приводят к значительной потере воды и препятствуют созданию пригодной для жизни планеты», – рассказывает Джун Ян. 
По этой причине некоторые ледяные тела, по мнению исследователей, никогда не смогут поддерживать жизнь. Среди них Европа и Энцелад, которые, скорее всего, превратятся из покрытых льдом тел в огненные шары, когда Солнце достигнет фазы супер-горячего красного гиганта через несколько миллиардов лет.
Земля была ледяным миром около 600-800 миллионов лет назад, который смог оттаять «правильно» благодаря парниковым газам, выбрасываемым вулканами, а также взаимодействию углекислого газа, воды и силикатных горных пород. 
Все это ставит под сомнение обитаемость многих покрытых океанами экзопланет, открытых учеными в последние годы. Миры, которые ранее считались потенциально пригодными для жизни, на самом деле могут оказаться или парниками, или замерзшими телами, абсолютно неприспособленными для жизни. Источник: in-space.ru

______________________________________________________________________________________________

Ядро Солнца вращается в четыре раза быстрее его поверхности.

После четырех десятилетий поиска ученые нашли доказательства существования на Солнце определенного типа сейсмических волн благодаря совместному проекту Европейского космического агентства (ESA) и NASA – обсерватории SOHO. Эти низкочастотные волны, называемые g-модами, показывают, что солнечное ядро вращается примерно в четыре раза быстрее, чем его поверхность. 
«Это, безусловно, самый важный результат SOHO за последнее десятилетие», – сказал Бернхард Флек, ученый проекта SOHO. 
Подобно тому, как сейсмологи изучают структуру Земли, исследуя явления, так или иначе связанные с возникновением землетрясений, ученые, пытающиеся понять Солнце, используют гелиосейсмологию для изучения внутренней структуры нашей звезды, отслеживая движение волн. 
Ученые долго думали, что гравитационные волны, или g-моды, содержат ключ к изучению вращения ядра нашей звезды. Но их трудно найти, потому что у них нет четких сигнатур на поверхности Солнца. С другой стороны, звуковые волны, также называемые волнами давления или р-модами, легко обнаружить на поверхности, но они не дают никакой информации о вращении ядра ​​Солнца.
«Мы искали эти неуловимые g-волны на Солнце более 40 лет, и, хотя предыдущие попытки намекали на их обнаружение, окончательных доказательств не было. Наконец, мы однозначно нашли их подпись», – рассказывает Эрик Фоссат, ведущий автор исследования из Обсерватории Лазурного берега (Франция). 
Эрик Фоссат и его коллеги использовали данные, собранные за 16,5 лет с помощью инструмента GOLF на SOHO. Применяя различные аналитические и статистические методы, они смогли выявить характерный отпечаток g-мод на более легко обнаруживаемых p-модах. 
Исследователи изучили поверхностные акустические волны в атмосфере Солнца, некоторые из которых проникают в ядро звезды, где взаимодействуют с гравитационными волнами. Из этих наблюдений были обнаружены вращательные движения солнечного ядра. Ученые точно определили время, за которое акустическая волна перемещается от поверхности до центра Солнца и обратно, и что гравитационные волны оказывают незначительно влияние на это движение. 
Отпечаток g-волн предполагает, что солнечное ядро совершает один оборот примерно за одну неделю, что почти в четыре раза быстрее, чем поверхность Солнца и промежуточные слои, которые имеют периоды вращения от 25 дней на экваторе до 35 дней на полюсах. Обнаружение сигнатуры вращения солнечного ядра открывает новый набор вопросов для исследователей нашей звезды, например, как взаимодействуют по-разному вращающиеся слои Солнца, и что мы можем узнать о составе ядра на основе его вращения. 
«G-моды ранее были обнаружены у других звезд, и теперь благодаря SOHO мы, наконец, нашли убедительное доказательство их присутствия на Солнце. Очень важно получить первое косвенное измерение скорости вращения ядра нашего светила», – заключил Эрик Фоссат. 
Наиболее вероятное объяснение такого различия заключается в том, что более быстрое вращение ядра сохранилось с момента формировалось Солнца около 4,6 миллиардов лет назад, а верхние слои со временем были заторможены солнечными ветрами и солнечными пятнами. Источник: in-space.ru

______________________________________________________________________________________________

Может ли ткань пространства-времени быть с изъянами? 

Самый большой урок общей теории относительности Эйнштейна состоит в том, что пространство само по себе не является плоской, неизменной и абсолютной сущностью. Оно соткано вместе со временем в одну ткань: пространство-время. Эта ткань непрерывная, гладкая и становится изогнутой и деформированной в присутствии вещества и энергии. Все существующее в этом пространстве-времени движется по пути, определяемому кривизной пространства-времени, и его движение ограничено скоростью света. Но что, если в самой ткани будут дефекты? Это не научная фантастика, а действительно существующая идея в теоретической физике. С ней связаны высокоэнергетические реликты вроде доменных стен, космических струн и монополий. Итан Зигель постарался ответить на вопрос, каким может быть их происхождение, свойства и как они будут уживаться с обычной Вселенной. 
Получить дефектную Вселенную, как выяснилось, математически не так уж и сложно. 
Попытайтесь представить пространство как можно лучше. На что оно похоже? Будет ли оно пустым, гладким и по большей части однородным? Вы тоже думаете, что единственные отклонения от этого состояния будут связаны с присутствием масс и квантов энергии? Это хороший подход, который обычно выбирают физики. На крупных масштабах пространство будет представлять собой трехмерную сетку, единственными отклонениями в которой будут небольшие регионы пространственной кривизны малой величины, создающие гравитационную силу, которую мы хорошо знаем. Пространство в такой конфигурации будет в состоянии наименьшей энергии. 
Но как насчет возбужденных состояний? Или других? Чтобы было легче, давайте вычтем два пространственных измерения и оставим одно: линию. Линия может быть прямой, открытой и бесконечной, либо же замкнутой, как петля. В обоих случаях они будут линиями в состоянии наименьшей энергии. Каким было бы состояние высокой энергии? Представьте, что вы берете свою линию и подвешиваете ее, как струну. А теперь сделайте на струне узел, будто зашнуровываете шнурки. Струна без узла будет представлять собой одномерное пространство в состоянии с наименьшей энергией; струна с одним узлом будет представлять одномерное пространство в первом возбужденном состоянии. Этот узел будет 0-мерным топологическим дефектом. 
Теперь вы можете проделать интересные вещи с содержащей узел линией. Вы можете завязать другой узел точно так же и получить два топологических дефекта вместо одного. Но если вы завяжете узел в противоположном направлении (то есть сделаете такую же петлю, но иначе положите концы крест-накрест, прежде чем перебросить и затянуть), этот узел будет топологически противоположным оригинальному узлу. Если вы очень осторожно совместите оба узелка (изначальный и противоположный), выяснится, что они могут развязать друг друга и вернуть линию в состояние низкой энергии. 
Два типа этих нульмерных эффектов — узел и антиузел — имеют физические аналогии в нашей Вселенной: магнитные монополи. Узел соответствует изолированному северному магнитному полюсу; антиузел — изолированному южному магнитному полюсу. Если вы совместите их, они аннигилируют, как материя и антиматерия, и вернут ткань пространства-времени в низкое энергетическое состояние. Поскольку монополи это всего лишь точечные частицы, они будут вести себя как обычное вещества, не сильно отличаясь от электрических монополей (положительных и отрицательных электрических зарядов), которые есть в нашей Вселенной.
Итак, давайте вернемся к нашей трехмерной Вселенной. Теперь можете вообразить не только точечные дефекты, но и высокоразмерные дефекты: 
• Космические струны: когда одномерная линия в некотором роде пронизывает всю наблюдаемую Вселенную 
• Доменные стенки: когда двухмерная плоскость с различными свойствами от одной стороны до другой проходит через Вселенную 
• Космические текстуры: когда область трехмерного пространства закручивается в узлы 
Итак, у нас имеются монополи (0-мерные), струны (1-мерные), стенки (2-мерные) и текстуры (3-мерные) — всевозможные дефекты, которые вытекают из разных механизмов одного класса: когда нарушается симметрия.
Нарушение симметрии — серьезное дело в физике. Каждая существующая симметрия соответствует сохраняемой величине, поэтому, если симметрия нарушена, эта величина больше не сохраняется. Можно производить монополи, нарушая сферическую симметрию; можно производить струны, нарушая угловую или цилиндрическую симметрию; нарушение же дискретной симметрии может создать доменные стенки. Другие дефекты чуть сложнее нащупать, но они часто вступают в игру, когда дело доходит до сценариев с дополнительными размерностями. Но первые три — в частности монополи, космические струны и доменные стенки — представляют особый интерес для космологии. 
Мы знаем, что Стандартной моделью все не ограничивается и существует много продолжений и дополнений, которые могут иметь любопытные наблюдаемые последствия. Одно из них — это идея Великого объединения, когда электромагнитные, слабые и сильные ядерные силы объединяются при высоких энергиях. Идея объединения состоит в том, что все три силы Стандартной модели и, возможно, даже гравитацию при высоких энергиях можно было бы совместить в единой структуре. Это не только привело бы к появлению новых частиц и взаимодействий, но и позволило бы появиться магнитным монополям. Отсутствие магнитных монополей в наблюдаемой Вселенной зачастую упоминают как доказательство космической инфляции и того, что Вселенная никогда не станет достаточно горячей после конца инфляции, чтобы восстановить симметрию Теорий Великого объединения.
Космические струны и доменные стенки могли бы появиться при фазовых переходах, если бы действительно существовали, вскоре после окончания инфляции. Могут существовать некоторые чрезвычайно высокоэнергетические симметрии, образованные в ранние времена, при нарушении которых появляются подобные дефекты. Космические струны и доменные стенки — одна или целая сеть — должны были бы оставить сигнатуру в крупномасштабной структуре Вселенной, текстуры должны были бы показаться в CMB, а монополи — быть созданы в ходе прямых экспериментов. Некоторые физики указывают на магнитный монополь, открытый 14 февраля 1982 года, как на доказательство космической инфляции: был один монополь в наблюдаемой Вселенной, и мы его видели! 
И если монополи будут вести себя как вещество, космические струны, доменные стенки или космологические текстуры будут серьезно влиять на расширение Вселенной. Космические струны будут вести себя как пространственная кривизна, ограничиваясь порядка 0,4% общей энергетической плотности, а доменные стенки будут создавать форму темной энергии, которая так медленно ускоряет расширение Вселенной, что этого даже нельзя будет заметить. Космологические текстуры будут иметь такой же эффект, как и космологическая постоянная, но наша наблюдаемая Вселенная должна будет ограничиться одним-единственным дефектом, чтобы объяснить наши наблюдения. 
Монополи, струны, стенки, текстуры и прочие дефекты должны быть сверхтяжелыми, если бы существовали. Монополи стали бы самыми массивными частицами из обнаруженных (в 100 триллионов раз массивнее топ-кварка). Струны, стенки и текстуры стали бы семенами для крупномасштабных структур, стягивая вещество и образуя другие структуры, которые мы с легкостью бы разглядели при помощи современных телескопов, обследований и данных CMB. Современные ограничения говорят нам, что таких структур не существует в изобилии, и на них вряд ли пришлось бы больше нескольких процентов общего энергетического бюджета космоса. 
На сегодняшний день нет никаких доказательств того, что наша Вселенная дефектная, если не считать того единственного наблюдения магнитного монополя 35 лет назад. Хотя мы не можем опровергнуть их существование (только ограничить), нужно держать ушки на макушке и быть готовыми не только к их возможному обнаружению, но и к любым другим дополнениям Стандартной модели, не запрещенным физикой. В большинстве случаев, если их не существует, значит должно быть что-то, подавляющее их существование. Отсутствие доказательств не свидетельствует об отсутствии явления. Впрочем, и о наличии тоже. Источник: hi-news.ru

 

 

Комментарии запрещены.

Мой электронный адрес

Если кто хочет со мной связаться, или есть какие то предложение, информации. Об пожеланиях, ошибках и.т.д.. Пишите, вот моя электронная почта:
alavka907@gmail.com

Свежие записи
Декабрь 2018
Пн Вт Ср Чт Пт Сб Вс
« Ноя    
 12
3456789
10111213141516
17181920212223
24252627282930
31  
Архивы

Декабрь 2018
Пн Вт Ср Чт Пт Сб Вс
« Ноя    
 12
3456789
10111213141516
17181920212223
24252627282930
31