PostHeaderIcon 1.Почему гравитация движется со скоростью света?2.Мы наполовину состоим из материи других галактик.3.В Гарварде создали материал…4.Туманность Ориона…5.Если вся материя во вселенной исчезнет…6.Во Вселенной нашлась структура…

Почему гравитация движется со скоростью света? 

Если посмотреть на Солнце через 150 миллионов километров космоса, который разделяет наш мир от ближайшей звезды, свет, который вы видите, не показывает Солнце на текущий момент, а каким оно было 8 минут и 20 секунд назад. Это потому что свет движется не мгновенно (а со скоростью света, хаха): его скорость составляет 299 792,458 километра в секунду. Именно такое время нужно свету, чтобы преодолеть путь от фотосферы Солнца до нашей планеты. Но силе тяжести не обязательно нужно вести себя так же; возможно, как предсказывала теория Ньютона, гравитационная сила представляет собой мгновенное явление и ощущается всеми объектами с массой во Вселенной, через все эти огромные космические расстояния, одновременно. 
Так ли это в действительности? Если Солнце бы мгновенно исчезло, полетела бы Земля сразу же по прямой линии или же продолжила вращаться вокруг местоположения Солнца в течение еще 8 минут и 20 секунд? По общей теории относительности, ответ ближе ко второму варианту, поскольку не масса определяет гравитацию, а искривление пространства, которое определяется суммой всей материи и энергии в нем. Если бы Солнце исчезло, пространство стало бы не искривленным, а плоским, но эта трансформация была бы не мгновенной. Поскольку пространство-время — это ткань, переход стал бы неким «переливанием», которое отправило бы гигантскую рябь — гравитационные волны — через Вселенную, подобную ряби от брошенного в пруд камня. 
Скорость этой ряби определяется так же, как и скорость всего остального в ОТО: ее энергией и массой. Поскольку гравитационные волны не обладают массой, но имеют конечную энергию, они должны двигаться со скоростью света. А это значит, что Земля притягивается не к тому месту, где находится в пространстве Солнце, а к тому, где оно было чуть больше восьми минут назад. 
Если бы это была единственная разница между теориями гравитации Эйнштейна и Ньютона, мы немедленно заключили бы, что Эйнштейн ошибался. Орбиты планет так хорошо изучены и так точно и долго записывались (с конца 1500-х!), что если бы гравитация просто притягивала планеты к месту Солнца со скоростью света, предсказанные положения планет сильно не соответствовали бы их актуальному положению. Необходима блестящая логика, чтобы понять, что законы Ньютона требуют невероятной скорости гравитации такой точности, что если бы это было единственное ограничение, скорость гравитации должна была бы быть больше чем в 20 миллиардов раз быстрее скорости света. 
Но в ОТО есть еще один кусок головоломки, который имеет большое значение: орбитальная скорость планеты по мере ее движения вокруг Солнца. Земля, например, тоже движется, «покачиваясь» на волнах гравитации и часто опускаясь не там, где поднималась. Налицо два эффекта: скорость каждого объекта влияет на то, как он испытывает силу гравитации, а с ней и изменения в гравитационных полях. 
Но что особенно интересно, так это то, что изменения в гравитационном поле при конечной скорости гравитации и эффекты зависимых от скорости взаимодействий почти точно уравновешиваются. Именно неточность этого равновесия позволяет нам определить экспериментально, какая теория соответствует нашей Вселенной: ньютонова модель «бесконечной скорости гравитации» или эйнштейнова модель «скорость гравитации равна скорости света». В теории, мы знаем, что скорость гравитации должна соответствовать скорости света. Но гравитационная сила Солнца слишком слабая, чтобы измерить этот эффект. На самом деле, изменить его очень сложно, поскольку когда нечто движется с постоянной скоростью в постоянном гравитационном поле, никакого наблюдаемого эффекта нет вовсе. В идеале, нам нужна была бы система, в которой массивный объект движется с изменяющейся скорость через меняющееся гравитационное поле. Другими словами, нам нужна система, состоящая из тесной пары вращающихся наблюдаемых останков звезд, хотя бы одна из которых будет нейтронной. 
По мере вращения нейтронных звезд, они пульсируют, и эти импульсы видны нам на Земле всякий раз, когда полюс нейтронной звезды проходит через нашу линию визирования. Предсказания теории гравитации Эйнштейна невероятно чувствительны к скорости света, так что с самого первого обнаружения бинарной системы пульсаров в 1980-х годах, PSR1913+16 (Халса-Тейлора), мы свели скорость гравитации до равной скорости света с погрешностью измерения всего в 0,2%. 
Конечно, это непрямое измерение. Мы смогли осуществить косвенное измерение другого типа в 2002 году, когда в результате случайного совпадения Земля, Юпитер и очень мощный радиоквазар (QSO J0842+1835) выстроились на одну линию визирования. По мере движения Юпитера между Землей и квазаром, гравитационное искривление Юпитера позволило нам измерить скорость гравитации, исключить бесконечную скорость и определить, что она где-то между 2,55 х 108 и 3,81 х 108 метров в секунду, что полностью соответствует предсказаниям Эйнштейна. 
В идеале, мы могли бы измерить скорость этой ряби напрямую за счет прямого обнаружения гравитационных волн. LIGO нашла первую такую, в конце концов. К сожалению, из-за нашей неспособности правильно триангулировать место рождения этих волн, мы не знаем, с какой стороны они пришли. Рассчитав дистанцию между двумя независимыми детекторами (в Вашингтоне и Луизиане) и измерив разницу во времени прибытия сигнала, мы можем определить, что скорость гравитации соответствует скорости света и определить самые жесткие ограничения по скорости. 
Тем не менее, самые жесткие ограничения дают нам косвенные измерения от очень редких систем пульсаров. Лучшие результаты на настоящий момент говорят нам, что скорость гравитации между 2,993 х 108 и 3,003 х 108 метров в секунду, что прекрасно подтверждает ОТО и ужасно сказывается на альтернативных теориях гравитации (прости, Ньютон). 

_______________________________________________________________________________________________

Мы наполовину состоим из материи других галактик.

Выводы последнего исследования говорят о том, что половина (что гораздо больше, чем предполагалось в более ранних исследованиях) материи Млечного Пути, включая атомы, из которых мы все состоим, могли прийти сюда из-за пределов нашей галактики. Такие выводы были сделаны на основе проведенных с помощью суперкомпьютеров симуляций. Благодаря этому ученые смогли определить новый феномен, прозванный межгалактическим переносом. И он, по мнению исследователей, может помочь нам открыть секреты развития галактик. 
Моделирование, проводившееся командой астрофизиков из Северо-Западного университета, показало, что взрывы сверхновых способны выбрасывать большой объем газа за пределы тех галактик, в которых они находятся. При этом атомы этой материи переносятся из одной галактики в другую с помощью мощных галактических ветров. 
«Учитывая, сколько материи, из которой мы состоим, могло прийти из других галактик, мы можем уверенно рассматривать себя космическими путешественниками или межгалактическими иммигрантами», — заявил ведущий исследователь проекта Даниэль Англес-Алькасар. 
«Вероятно, значительная часть материи Млечного Пути изначально принадлежала другим галактикам, а затем была выброшена из них мощными ветрами, благодаря которым она пересекла межгалактическое пространство и наконец нашла свой новый дом в нашей галактике».
Несмотря на мнение о том, что эти межгалактические ветра были очень быстрыми – возможно, со скоростью в несколько сотен километров в секунду – огромные расстояния, разделяющие галактики, позволили атомам перебраться из одной галактики в другую лишь спустя миллиарды лет. 
Используя симуляционную систему FIRE (Feedback In Realistic Environments), исследователи смогли создать реалистичные 3D-модели эволюции галактик с момента Большого взрыва и до сегодняшних дней. Затем ученые использовали специальные алгоритмы для обработки данных о материи, которую галактики могли в себя впитать из других источников. Оказалось, что огромные объемы газа перетекли из мелких галактик в более крупные, как наш Млечный Путь. 
Более крупные галактики изначально обладали большим запасом материи. Кроме того, материи, попавшей в них из других источников, сложнее покинуть такие галактики. О том, что материя может переходить из одних галактик в другие, ученым было известно давно. Неизвестен был лишь масштаб и возможный объем этой материи. И согласно новому исследованию, атомы материи больших галактик, как та, в которой мы живем, могут брать свое начало за миллионы световых лет от них. 
«Это исследование изменяет наше понимание о том, как галактики формировались после Большого взрыва», — говорит Клод-Андре Фоше-Жиге, один из исследователей. 
Галактики представляют собой большое скопление звезд, связанных между собой гравитационным притяжением единого источника массы, роль которого, как правило, играют сверхмассивные черные дыры, находящиеся прямо в их центрах. Однако почти сразу после Большого взрыва почти 14 миллиардов лет назад никаких звезд и галактик не было. Пространство было заполнено лишь однородным газом. 
Легкие изменения в потоках этого газа и гравитационный пул в конечном итоге привели к формированию первых звезд, скоплений и, в конце концов, галактик. Новое же исследование, по словам ученых, дает свежий взгляд на понимание процесса галактического формирования. 
«Получается, что мы не такие уж и «местные». Это исследование дает нам представление о том, как могут быть между собой связаны удаленные объекты в небе», — отмечает Фоше-Жиге. Источник: hi-news.ru

_______________________________________________________________________________________________

В Гарварде создали материал, способный заклеить любую рану.

Несомненно, одной из основных проблем хирургов при проведении экстренных операций (или же в случае непредвиденных осложнений) является борьба с кровотечениями. При этом «стандартные» методы коагуляции и ушивания ран не всегда удобны и быстры. Но недавно группе ученых из Гарварда удалось разработать клей для человеческих тканей. Этот клей хорошо прилипает к любым мокрым поверхностям, обеспечивая возможность «заклеить» даже поврежденную сердечную мышцу. 
О новой разработке сообщает редакция журнала Science. Согласно сообщению, новое вещество разработано на основе соединения, выделяемого сухопутным слизнем Arion subfuscus, обитающим в Западной и Центральной Европе. Arion subfuscus вырабатывает клейкую субстанцию, которая не растворяется в воде и при этом хорошо прилипает к любой мокрой поверхности, даже к грунту. «Природный клей» состоит из ряда белковых цепочек, заряженных отрицательно и положительно. Эти цепочки, связываясь между собой, образуют длинные звенья. 
Используя альгинаты, сахаристые волокна, извлеченные из водорослей, гидрогель и аналог соединения слизня, ученые и разработали «клей для человеческих тканей». Жидкое вещество или даже пластырь на основе нового материала приклеивается к поверхности тремя разными путями, формируя прочные ковалентные, а также менее прочные ионные и водородные связи. Сила «схватывания», образующегося благодаря этим связям, как утверждают эксперты, значительно выше аналогичного параметра для связок и хрящей. Нити альгината участвуют в формировании самых прочных связей и рассеивают энергию при сжатии и растяжении склеенной поверхности. Пластырь на основе новой технологии можно растянуть в 14 раз, и он не разорвется. 
Свой материал ученые испытали в ходе ряда лабораторных тестов. Им удалось успешно заклеить поврежденные мышцы крыс, кожу свиней и даже поврежденное свиное сердце. Само вещество не вызывает раздражения, аллергических реакций и иных осложнений. Как заявил Дональд Ингбер, работавший над технологией, 
«Природа часто предлагает нам элегантные пути решения обыденных проблем. Главное — понимать, где найти решение. Мы очень рады тому, что наша технология, родоначальником которой послужила простая улитка, может стать основой для новых методик лечения ран и проведения хирургических операций». Источник: hi-news.ru

_____________________________________________________________________________________________

Туманность Ориона поставила под сомнение понимание процесса образования звезд в скоплениях.

Новые наблюдения на Обзорном телескопе VST ESO позволили астрономам обнаружить три поколения новорожденных звезд в звездном скоплении внутри Туманности Ориона. Неожиданное открытие стало значительным шагом к пониманию того, как формируются такие скопления. Оно показывает, что звездообразование может идти всплесками, причем каждый такой всплеск происходит на гораздо более короткой временной шкале, чем считалось прежде. 
Знаменитая Туманность Ориона – один из самых близких к нам звездных «инкубаторов», в котором образуются как маломассивные, так и массивные звезды. 
Группа исследователей под руководством астронома ESO Джакомо Беккари воспользовалась беспрецедентным качеством новых данных, чтобы точно измерить блеск и цвета всех звезд скопления Туманности Ориона. Эти измерения позволили астрономам определить массу и возраст звезд. К их удивлению, полученные результаты выявили три группы звезд, различающихся по возрасту.
«Высочайшее качество изображений, получаемых с камерой OmegaCAM, позволяет с уверенностью утверждать, что мы видим в центральной части Туманности Ориона три различных звездных популяции», – рассказывает Джакомо Беккари. 
Значение новых результатов очень велико. Звезды в скоплении образовались не одновременно, а это, возможно, означает, что понимание процесса образования звезд в скоплениях нуждается в пересмотре. 
Исследователи тщательно проанализировали возможность другой интерпретации полученных результатов: необычный цвет некоторых звезд мог быть связан не с их возрастом, а с расположенными рядом с ними скрытыми звездами-компаньонами, из-за чего звезды казались ярче и краснее, чем на самом деле. Но таким двойным системам пришлось бы приписать свойства, которые никогда у них не наблюдались. К тому же измерения других параметров звезд скопления, таких, как их скоростей вращения и спектров, также указывали на различие в возрасте.
«Хотя мы не можем полностью исключить возможность того, что эти звезды являются двойными, гораздо более естественно заключить, что мы действительно видим три поколения звезд, образовавшихся друг за другом менее чем за три миллиона лет», – пояснил Джакомо Беккари. 
Новые результаты являются веским аргументом в пользу того, что звездообразование в скоплении Туманности Ориона происходило всплесками, и что эти всплески следовали друг за другом быстрее, чем считалось до сих пор.

________________________________________________________________________________________________

Если вся материя во вселенной исчезнет, будет ли пространство существовать?

Если вся материя во вселенной внезапно исчезнет, будет ли пространство существовать? Исаак Ньютон считал, что будет. С его точки зрения, пространство — это нечто похожее на симулятор голографических образов из «Звездного пути»: своеобразная трехмерная сеть, на которую проецируются все объекты вселенной. На первых страницах своей работы «Математические начала натуральной философии» Ньютон написал: «Абсолютное пространство по самой своей сущности, безотносительно к чему бы то ни было внешнему, остается всегда одинаковым и неподвижным».
Убедительные подтверждения этой мысли можно найти в нашей повседневной жизни. Я иду на восток, вы идете на запад, а здание почты остается на месте: система координат остается статичной. Но современник Ньютона, немецкий математик и философ Готфрид Лейбниц, не принял идею абсолютного пространства. Если убрать все те разнообразные объекты, которые вместе составляют вселенную, утверждал он, «пространство» больше не будет иметь никакого смысла. Аргументы Лейбница становятся гораздо убедительнее, если вы попадаете в космос, где вы можете отмечать только свою удаленность от солнца или других планет — объектов, которые находятся в постоянном движении относительно друг друга. По мнению Лейбница, единственный разумный вывод заключается в том, что пространство «относительно»: пространство представляет собой множество постоянно изменяющихся расстояний между вами и различными объектами (и расстояний между ними), а вовсе не «абсолютную реальность».
Напротив, ответил Ньютон. Эффекты абсолютного пространства вполне наблюдаемы. И, чтобы это доказать, сэр Исаак провел эксперимент с вращающимся ведром воды. Несмотря на свою внешнюю простоту, этот эксперимент спровоцировал начало споров о природе пространства, времени, движения, ускорения и силы, которые продолжаются до сих пор.
В своих «Математических началах натуральной философии» Ньютон предлагает нам представить себе ведро воды, подвешенное на веревке за ручку. Если поворачивать его по часовой стрелке, веревка будет закручиваться. Что произойдет, если отпустить ведро? Ведро начнет вращаться против часовой стрелки — сначала медленно, а затем быстрее. Но произойдет еще кое-что: как пишет Ньютон, поверхность воды «постепенно будет принимать вогнутую форму, опускаясь посередине и поднимаясь у края. В течение некоторого времени ведро и вода будут вращаться вместе. В конце концов вращение ведра замедлится, и оно начнет вращаться в другую сторону; вращение воды тоже замедлится, и ее поверхность снова станет гладкой.
Ученики старших классов уже знают о центробежной силе, но что заставляет воду подниматься у края ведра? По мнению Ньютона, это не может быть движение воды относительно ведра, потому что поверхность воды становится наиболее искривленной в тот момент, когда вода вращается быстрее всего, «синхронно» с ведром. Разумеется, ведро и вода вращаются относительно Земли, но это тоже не может служить объяснением, потому что такой же эксперимент, проведенный в космосе, по мнению Ньютона, покажет тот же результат.
С точки зрения Ньютона, единственный способ объяснить эксперимент с ведром — это сказать, что вода вращается относительно абсолютного пространства. Здесь возникает понятие инерции — еще одного ключевого понятия в «Математических началах натуральной философии» — то есть сопротивления тела любым изменениям в скорости или направлении его движения. Когда ведро и вода вращаются, стенки ведра мешают воде двигаться прямо в стороны, поэтому она поднимается у края ведра.
Но почему объекты вообще обладают инерцией? В 19 веке австрийский физик Эрнст Мах (Ernst Mach) выдвинул идею о том, что любое объяснение движения и инерции — в том числе движения воды во вращающемся ведре — можно рассматривать только относительно всей остальной материи во вселенной. С точки зрения Маха, сама Земля представляет собой более сложную и масштабную версию ведра: с момента формирования солнечной системы миллиарды лет назад Земля непрерывно вращалась, и ее экватор «выпячивался», подобно воде во вращающемся ведре. Мах задумался: если вращение Земли остановить и заставить все другие планеты и звезды вращаться вокруг нее, останется ли ее экватор выпуклым?
Ньютон сказал бы, что нет: нет вращения — нет выпячивания. Однако, с точки зрения Маха, ответ на этот вопрос зависит от того, откуда берется инерция объекта. Если она каким-то образом является следствием массы материи во вселенной, тогда планета останется выпуклой у экватора, пока другие планеты и звезды будут вращаться вокруг нее. Это картина относительности Лейбница в усиленном варианте: по мнению Маха, движение относительно, а инерция является мерой отношения между тем или иным объектом и всей остальной материей во вселенной. Если теория Маха верна, то звезды и галактики, близкие и дальние, в определенной мере обуславливают форму Земли и вогнутую поверхность воды во вращающемся ведре Ньютона. Но Мах не объяснил, каким образом эти далекие звезды и галактики влияют на Землю — и даже сегодня ответ на этот вопрос остается загадкой.
Возможно, самым внимательным читателем трудов Маха стал Альберт Эйнштейн, который позже сумел инкорпорировать то, что он назвал «принципом Маха» — идею о том, что инерция тела зависит от совокупности материи во вселенной — в свою теорию общей относительности.
Огромный успех теории Эйнштейна стал финальным ударом по ньютоновской концепции абсолютного пространства, но без этой концепции абсолютного пространства мы до сих пор не можем понять смысл эксперимента с вращающимся ведром. В своей книге «Ткань космоса» физик Брайан Грин пишет, что, хотя теория Эйнштейна уничтожила ньютоновскую концепцию абсолютного пространства, она дала нам нечто взамен — четырехмерную структуру, называемую пространственно-временным континуумом — и он, по мнению Грина, является абсолютным. Мы с вами можем спорить о длительности парада или о расстоянии, которое прошли его участники, но мы сойдемся во мнениях относительно общего расстояния в пространственно-временном континууме между началом и концом парада. Это довольно трудно наглядно объяснить, поскольку мы не способны видеть четыре измерения, однако уравнения в теории Эйнштейна это подтверждают.
Тем не менее, это не последнее слово Грина в этом вопросе. Сейчас физики выдвигают гипотезу, что «поле Хиггса», наделяющее частицы массой, пронизывает всю вселенную. В то время как пространственно-временной континуум Эйнштейна может служить системой координат, относительно которой можно измерять ускорение, теория поля Хиггса идет еще дальше: наделяя сопротивлением все то, что это поле пронизывает, оно может объяснить, откуда у объектов берется инерция.
Еще одну интересную теорию выдвинул Пол Дэвис , физик из государственного университета Аризоны, предположивший, что «пустое» пространство на самом деле подобно кипящей пене, состоящей из субатомных частиц, которые непрерывно образуются и исчезают. С его точки зрения, эта «шалость вакуума» может служить заменой абсолютному пространству.
Прошло уже более трех столетий, а вопросы, вызванные вращающимся ведром Ньютона — касающиеся пространства и движения, массы и инерции — продолжают волновать физиков и философов. Что-то заставляет воду подниматься у краев ведра, но является ли это следствием структуры пространственно-временного континуума, поля Хиггса или некой квантовой пены, пока остается загадкой.
________________________________________________________________________________________________

Во Вселенной нашлась структура, протянувшаяся на 5 млрд световых лет.

Мы часто забываем, насколько велик космос, в котором даже наш Млечный Путь – не самая маленькая из галактик – не более чем незаметная песчинка. Зато некоторые объекты крупномасштабной структуры Вселенной могут достигать величин, которые трудно даже представить. Один из таких астрофизики заметили лишь недавно: на его существование указывает цепь из девяти гамма-всплесков, разнесенных на невероятные 5 млрд световых лет – почти на 10% от размеров всего наблюдаемого мира.
Гамма-всплески рождаются в результате взрывов некоторых сверхновых. Это самые мощные из всех событий, происходящих во Вселенной: за несколько секунд узкий луч гамма-всплеска может выбросить столько энергии, сколько Солнце не выделит за все время своего существования. Хорошо, что происходит такое крайне редко и далеко от нас: они наблюдаются лишь в далеких галактиках и в каждой случаются не чаще нескольких раз за миллион лет. Считается, что, если бы гамма-всплеск произошел в Млечном Пути, жизни на Земле пришел бы моментальный конец.
Зато для астрономов гамма-всплески – одни из самых интригующих объектов. Кроме того, их ярчайшие вспышки в гамма-диапазоне и долгие послесвечения на других длинах волн позволяют идентифицировать даже самые отдаленные и тусклые галактики. Такую работу провели недавно и венгерские ученые совместно с коллегами из США, обнаружив девять гамма-всплесков, которые свидетельствуют о наличии структуры из девяти гравитационно связанных галактик.
Это далеко не единственное скопление галактик, известное на настоящее время. Достаточно сказать, что наш собственный Млечный Путь входит в Местную группу, которая насчитывает их больше полусотни, а в поперечнике достигает мегапарсека – порядка 3 млн световых лет. Судя по тому, что до всех девяти галактик, найденных астрономами на этот раз, примерно по 7 млрд световых лет, их скопление мы наблюдаем практически ровно «в профиль» – и его размеры в тысячи раз больше нашей Местной группы.
Более того, они больше теоретического максимума в 1,2 млрд световых лет, который устанавливают существующие математические модели, описывающие формирование таких элементов крупномасштабной структуры Вселенной. «Если мы нигде не ошиблись, такая структура противоречит современным моделям, – говорят авторы работы. – Было большой неожиданностью найти нечто столь громадное – и мы до сих пор не понимаем, как оно могло появиться на свет».

Комментарии запрещены.

Мой электронный адрес

Если кто хочет со мной связаться, или есть какие то предложение, информации. Об пожеланиях, ошибках и.т.д.. Пишите, вот моя электронная почта:
alavka907@gmail.com

Свежие записи
Сентябрь 2018
Пн Вт Ср Чт Пт Сб Вс
« Авг    
 12
3456789
10111213141516
17181920212223
24252627282930
Архивы

Сентябрь 2018
Пн Вт Ср Чт Пт Сб Вс
« Авг    
 12
3456789
10111213141516
17181920212223
24252627282930