PostHeaderIcon 1.Разработан метод стирания страшных воспоминаний.2.Изобретена резина…3.Астрономы открыли белого карлика.4.Золотое сечение.5.Какие факторы обусловливают глобальное потепление?6.Катаклизмы Сверхновых Звезд в нашей Галактике.

Разработан метод стирания страшных воспоминаний.

Ослабление связей между нейронами позволяет выборочно подавлять плохие воспоминания. С помощью метода оптогенетики американским ученым удалось избавить мышей от страха, вызванного событиями прошлого. В будущем методика может стать основой терапии посттравматического стрессового расстройства (ПТСР) и тяжелых фобий. Исследование было опубликовано в журнале Neuron. 
Биологи из Калифорнийского университета в Риверсайде нашли способ подавления реакции страха на звуковые стимулы. В ходе экспериментов ученые включали лабораторным мышам два вида звуков — низкий и высокий. Изначально особи не испытывали перед ними страха. Затем после включения высокого звука животные получали удар током. В результате у мышей выработалась реакция страха — как только раздавался высокий звук, они замирали от ужаса. 
Ученые объяснили эту реакцию формированием синаптических связей. Как только раздавался звук, связи усиливались, а звуковые сигналы поступали в миндалевидное тело. Именно эта зона мозга отвечает за «усвоение» страха и память. 
С помощью оптогенетики биологи ослабили синаптические связи. «Нам удалось экспериментально стимулировать только те нейроны, которые отвечают за высокий звук. Низкочастотная световая стимуляция позволила ослабить страх, связанный с воспоминанием», — цитирует Science Daily одного из авторов исследования Ена Чунхена Чжо.
Методика позволяет выборочно удалять страшные воспоминания, сохраняя при этом реакции на другие стимулы, которые важны для выживания. Так, ветеран войны перестанет испытывать патологический ужас из-за шума пролетающего вертолета, но сохранит страх перед звуками выстрелов. 
Ученые планируют также привести эксперименты с вознаграждением, когда определенный стимул ассоциируется с некой наградой. Методику можно будет применять для борьбы с различными видами зависимостей.
Похожие эксперименты с плохими воспоминаниями также проводили японские и американские ученые. С помощью оптогенетики они смогли разрушить у мышей связи между нейтральным явлением и ожиданием страшного события. Для устранения страхов ученые также применяют блокировку молекул и модификацию генов. Источник: hightech.fm

_______________________________________________________________________________________________

Изобретена резина, которая не боится проколов.

Исследователи из Гарвардской школы инжиниринга и прикладных наук имени Джона Полсона (SEAS) разработали новый прочный тип резины, который может самовосстанавливаться после прокола.
С такой резиной можно будет забыть о шиномонтаже, проколах из-за коварных саморезов и со спокойной душой гонять по обочинам на старых трассах. А если ваш сосед недоволен тем, что вы занимаете его парковочное место, ему придется постараться, чтобы сделать дырку в вашем колесе. Одним словом, гарвардские ученые могут облегчить многие аспекты жизни автолюбителя. 
Исследователи из SEAS уже давно занимаются «бессмертными» материалами. Так, недавно они изобрели вечный гидрогель. Но твердые материалы — это гораздо сложнее. Резина изготовлена из полимеров с постоянными ковалентными связями. Эти связи, конечно, очень сильные, но раз сломавшись, восстановлению не подлежат. Только заплаткой.
Обратимые связи более слабые, чем постоянные. А ученые хотели не только самовосстанавливающуюся резину, но и прочную. Идея заключалась в том, чтобы смешать эти связи, хотя в теории они ведут себя как вода и масло, то есть смешиваются очень плохо. Ученые решили эту проблему с помощью «молекулярной веревки» или беспорядочно разветвленного полимера. Он позволяет смешивать две ранее не смешивающиеся связи гомогенно на молекулярном уровне. 
Обычная резина при нагрузке трескается. Но гибридный каучук образует «кракле» или «кракелен», — тонкие полоски, похожие на узоры в керамической посуде. По сути, те же трещины, только соединенные волокнистыми нитями. Они перераспределяют напряжение по всему материалу, а потом возвращаются в исходное состояние, когда нагрузка исчезает. Управление развития технологий Гарварда подало заявку на патент на эту технологию и активно ищет возможности для ее коммерциализации.
Делать материалы прочными научились еще в Древнем Риме. Ученые выяснили, что морские пирсы из бетона, построенные в начале нашей эры, становились со временем прочнее благодаря проникновению в поры бетона морской воды, оказывавшей сцепляющий для материала эффект. Источник: hightech.fm

__________________________________________________________________________________________

Астрономы открыли белого карлика, пережившего взрыв сверхновой.

Астрономы открыли крайне необычный белый карлик в созвездии Малой Медведицы, который в недавнем прошлом превратился в «нобелевскую» сверхновую, но каким-то загадочным образом пережил ее взрыв.
«Сверхновые первого типа используются сегодня в качестве стандартизованных космических «маяков», однако мы до сих пор не знаем, как они возникают и что происходит внутри них во время взрыва. Мы открыли белый карлик, которому удалось пережить этот взрыв, что доказывает, что подобные вспышки могут происходить при участии только одной вырожденной звезды «, — пишут Стефан Веннес (Stefan Vennes) из Института астрономии Академии наук Чехии в городе Ондржеёв и его коллеги.
Так называемые сверхновые типа Ia возникают из белых карликов — старых «выгоревших» звезд небольшой массы, лишенных собственных источников энергии. Они вспыхивают в двойных звездных системах, состоящих из двух белых карликов или белого карлика и красного гиганта. В первом случае сверхновая взрывается при слиянии карликов, а во втором — в результате накопления материи гиганта на поверхности меньшего светила.
Сверхновые первого типа взрываются с примерно одинаковой яркостью из-за физических процессов, управляющих их развитием. Это свойство Сол Перлмуттер, Адам Рисс и Брайан Шмидт использовали для демонстрации ускоряющегося расширения Вселенной, за что они получили Нобелевскую премию 2011 года по физике.
В отличие от других типов сверхновых, в результате этого взрыва как минимум одна звезда полностью исчезает, и на ее месте остается горячее и светящееся облако из раскаленной плазмы, множества тяжелых элементов, возникших в ходе взрыва, которое продолжает сиять еще несколько тысяч лет перед тем, как оно полностью остынет и угаснет. Из-за столь высокой скоротечности останки подобных сверхновых являются большой редкостью, и поэтому они привлекают взоры астрономов.
Веннес и его коллеги нашли крайне причудливый след одной из таких «нобелевских» сверхновых, наблюдая за необычной звездой LP 40-365, движущейся с необычно высокой скоростью по небосводу. Этой скорости, составляющей примерно 500 километров в секунду, в принципе должно хватить для того, чтобы преодолеть силу притяжения Галактики и покинуть ее пределы.
Эта звезда, на первый взгляд, является обычным белым светилом небольшой массы, однако ее необычный спектр, не похожий ни на что другое в Галактике, заставил астрономов обратить на нее пристальное внимание и наблюдать за ней на протяжении последних двух лет.
Подобные наблюдения раскрыли множество странностей в устройстве и поведении этой звезды. Полное отсутствие нейтрального водорода и гелия на ее поверхности, достаточно низкая температура и многие другие свойства LP 40-365 указали на то, что она является не «нормальным» светилом, а белым карликом с крайне необычными свойствами.
Все это заставило ученых проследить траекторию полета LP 40-365 и попытаться понять, что заставило ее «катапультироваться» и начать лететь со столь высокой скоростью. Для этого ученые вычислили массу белого карлика, оказавшуюся примерно в пять раз меньше солнечной, и определили расстояние до него – около 970 световых лет.
Используя эти данные, Веннес и его коллеги обнаружили, что траектория полета LP 40-365 проходит вдалеке от крупных шаровых скоплений звезд и центра Галактики, откуда эту звезду могли выбросить черные дыры или другие массивные объекты. Это, в свою очередь, означает, что данный белый карлик является «жертвой» взрыва сверхновой, причиной рождения которой он послужил сам.
Как полагают ученые, LP 40-365 примерно 50 миллионов лет назад был частью двойной системы, расположенной на другом краю Галактики, в нескольких тысячах световых лет от текущего положения этого светила. Белый карлик, обладавший тогда примерно в 1,5 раза большей массой, чем сегодня, постепенно «воровал» материю своего спутника и накапливал ее на своей поверхности.
Когда его масса достигла критической отметки, его верхние слои взорвались, а его горячее ядро, состоящее из неона, кислорода и других «тяжелых» элементов, было катапультировано в космос, в результате чего он начал двигаться с огромной скоростью.
Что произошло со второй звездой, Веннес и его коллеги пока не знают, однако существование LP 40-365 говорит о том, что рождение сверхновых первого типа не обязательно приводит к гибели белого карлика, как считалось ранее. Это должно заставить ученых пересмотреть ту роль, которую сверхновые первого типа играют в современной космологии.

_______________________________________________________________________________________________

Золотое сечение: как это работает.

Золотое сечение — это универсальное проявление структурной гармонии. Оно встречается в природе, науке, искусстве – во всем, с чем может соприкоснуться человек. Однажды познакомившись с золотым правилом, человечество больше ему не изменяло. 
Определение. 
Наиболее емкое определение золотого сечения гласит, что меньшая часть относится к большей, как большая — ко всему целому. Приблизительная его величина – 1,6180339887. В округленном процентном значении пропорции частей целого будут соотноситься как 62% на 38%. Это соотношение действует в формах пространства и времени. 
Древние видели в золотом сечении отражение космического порядка, а Иоганн Кеплер называл его одним из сокровищ геометрии. Современная наука рассматривает золотое сечение как «ассиметричную симметрию», называя его в широком смысле универсальным правилом, отражающим структуру и порядок нашего мироустройства. 
История. 
Представление о золотых пропорциях имели древние египтяне, знали о них и на Руси, но впервые научно золотое сечение объяснил монах Лука Пачоли в книге «Божественная пропорция» (1509), иллюстрации к которой предположительно сделал Леонардо да Винчи. Пачоли усматривал в золотом сечении божественное триединство: малый отрезок олицетворял Сына, большой – Отца, а целое – Святой дух. 
Непосредственным образом с правилом золотого сечения связано имя итальянского математика Леонардо Фибоначчи. В результате решения одной из задач ученый вышел на последовательность чисел, известную сейчас как ряд Фибоначчи: 1, 2, 3, 5, 8, 13, 21, 34, 55 и т.д. На отношение этой последовательности к золотой пропорции обратил внимание Кеплер: «Устроена она так, что два младших члена этой нескончаемой пропорции в сумме дают третий член, а любые два последних члена, если их сложить, дают следующий член, причем та же пропорция сохраняется до бесконечности». Сейчас ряд Фибоначчи — это арифметическая основа для расчетов пропорций золотого сечения во всех его проявлениях. 
Леонардо да Винчи также много времени посвятил изучению особенностей золотого сечения, скорее всего, именно ему принадлежит и сам термин. Его рисунки стереометрического тела, образованного правильными пятиугольниками, доказывают, что каждый из полученных при сечении прямоугольников дает соотношения сторон в золотом делении. 
Со временем правило золотого сечения превратилось в академическую рутину, и только философ Адольф Цейзинг в 1855 году вернул ему вторую жизнь. Он довел до абсолюта пропорции золотого сечения, сделав их универсальными для всех явлений окружающего мира. Впрочем, его «математическое эстетство» вызывало много критики. 
Природа. 
Даже не вдаваясь в расчеты, золотое сечение можно без труда обнаружить в природе. Так, под него попадают соотношение хвоста и тела ящерицы, расстояния между листьями на ветке, есть золотое сечение и в форме яйца, если условную линию провести через его наиболее широкую часть. 
Белорусский ученый Эдуард Сороко, который изучал формы золотых делений в природе, отмечал, что все растущее и стремящееся занять свое место в пространстве, наделено пропорциями золотого сечения. По его мнению, одна из самых интересных форм это закручивание по спирали. 
Еще Архимед, уделяя внимание спирали, вывел на основе ее формы уравнение, которое и сейчас применяется в технике. Позднее Гете отмечал тяготение природы к спиральным формам, называя спираль «кривой жизни». Современными учеными было установлено, что такие проявления спиральных форм в природе как раковина улитки, расположение семян подсолнечника, узоры паутины, движение урагана, строение ДНК и даже структура галактик заключают в себе ряд Фибоначчи. 
Человек. 
Модельеры и дизайнеры одежды все расчеты делают, исходя из пропорций золотого сечения. Человек – это универсальная форма для проверки законов золотого сечения. Конечно, от природы далеко не у всех людей пропорции идеальны, что создает определенные сложности с подбором одежды. 
В дневнике Леонардо да Винчи есть рисунок вписанного в окружность обнаженного человека, находящегося в двух наложенных друг на друга позициях. Опираясь на исследования римского архитектора Витрувия, Леонардо подобным образом пытался установить пропорции человеческого тела. Позднее французский архитектор Ле Корбюзье, используя «Витрувианского человека» Леонардо, создал собственную шкалу «гармонических пропорций», повлиявшую на эстетику архитектуры XX века. 
Адольф Цейзинг, исследуя пропорциональность человека, проделал колоссальную работу. Он измерил порядка двух тысяч человеческих тел, а также множество античных статуй и вывел, что золотое сечение выражает среднестатистический закон. В человеке ему подчинены практически все части тела, но главный показатель золотого сечения это деление тела точкой пупа. 
В результате измерений исследователь установил, что пропорции мужского тела 13:8 ближе к золотому сечению, чем пропорции женского тела – 8:5. 
Искусство пространственных форм. 
Художник Василий Суриков говорил, «что в композиции есть непреложный закон, когда в картине нельзя ничего ни убрать, ни добавить, даже лишнюю точку поставить нельзя, это настоящая математика». Долгое время художники следовали этому закону интуитивно, но после Леонардо да Винчи процесс создания живописного полотна уже не обходится без решения геометрических задач. Например, Альбрехт Дюрер для определения точек золотого сечения использовал изобретенный им пропорциональный циркуль. 
Искусствовед Ф. В. Ковалев, подробно исследовав картину Николая Ге «Александр Сергеевич Пушкин в селе Михайловском», отмечает, что каждая деталь полотна, будь то камин, этажерка, кресло или сам поэт, строго вписаны в золотые пропорции. 
Исследователи золотого сечения без устали изучают и замеряют шедевры архитектуры, утверждая, что они стали таковыми, потому что созданы по золотым канонам: в их списке Великие пирамиды Гизы, Собор Парижской Богоматери, Храм Василия Блаженного, Парфенон. 
И сегодня в любом искусстве пространственных форм стараются следовать пропорциям золотого сечения, так как они, по мнению искусствоведов, облегчают восприятие произведения и формируют у зрителя эстетическое ощущение. 
Слово, звук и кинолента. 
Формы временного искусства по-своему демонстрируют нам принцип золотого деления. Литературоведы, к примеру, обратили внимание, что наиболее популярное количество строк в стихотворениях позднего периода творчества Пушкина соответствует ряду Фибоначчи – 5, 8, 13, 21, 34. 
Действует правило золотого сечения и в отдельно взятых произведениях русского классика. Так кульминационным моментом «Пиковой дамы» является драматическая сцена Германа и графини, заканчивающаяся смертью последней. В повести 853 строки, а кульминация приходится на 535 строке (853:535=1,6) – это и есть точка золотого сечения. 
Советский музыковед Э. К. Розенов отмечает поразительную точность соотношений золотого сечения в строгих и свободных формах произведений Иоганна Себастьяна Баха, что соответствует вдумчивому, сосредоточенному, технически выверенному стилю мастера. Это справедливо и в отношении выдающихся творений других композиторов, где на точку золотого сечения обычно приходится наиболее яркое или неожиданное музыкальное решение. 
Кинорежиссер Сергей Эйзенштейн сценарий своего фильма «Броненосец Потёмкин» сознательно согласовывал с правилом золотого сечения, разделив ленту на пять частей. В первых трех разделах действие разворачивается на корабле, а в последних двух – в Одессе. Переход на сцены в городе и есть золотая середина фильма. 

_______________________________________________________________________________________________

Какие факторы обусловливают глобальное потепление?

Изменение климата происходит неоднородно по всей планете, но усредненные показатели свидетельствуют о том, что происходит глобальное потепление, причем этот процесс набирает обороты.
С 1880 по 2016 г. средняя температура земной поверхности повысилась на 0,95 °С, увеличиваясь в среднем на 0,07 °С каждые 10 лет. За последние десятилетия темпы потепления ускорились. Так, в течение последних 45 лет глобальная температура земной поверхности увеличивалась в среднем на 0,17 °С каждые 10 лет. Такие данные представило Национальное управление океанических и атмосферных исследований США (National Oceanic and Atmospheric Administration). Согласно прогнозам ведомства к 2020 г. глобальная температура поверхности увеличится на 0,5 °С, даже если выбросы углекислого газа в атмосферу будут ограничены. Это обусловлено тем, что океан обладает огромной инерцией во времени.
К нагреванию земной поверхности приводят выбросы парниковых газов вследствие сжигания ископаемых видов топлива. Основными парниковыми газами являются водяной пар, углекислый газ, метан, озон, закись азота.
Перед началом промышленной революции присутствие углекислого газа в атмосфере составляло около 280 частиц на миллион (parts per million), а сегодня — около 400. То есть в каждом миллионе молекул воздуха 400 молекул углекислого газа.
К увеличению содержания углекислого газа в атмосфере также приводит уничтожение лесов. Когда деревья уничтожают, в атмосферу выбрасывается большое количество углерода, который они хранили в процессе фотосинтеза. По данным Глобальной оценки лесных ресурсов (Global Forest Resources Assessment), в атмосферу выпускается почти миллиард тонн углерода ежегодно из-за процесса обезлесения (вырубка или выжигание).
Метан поступает в атмосферу разными способами, но преимущественно вследствие деятельности человека (добыча полезных ископаемых, использование природного газа, массовое выращивание скота и т.п.). Так, по данным Агентства защиты окружающей среды США (Environmental Protection Agency), люди ответственны за более чем 60% выбросов метана в атмосферу.
Глобальное потепление — это процесс, связанный с изменением климата. Наиболее заметные последствия изменения климата: таяние ледников, повышение частоты экстремальных погодных условий (ураганы, засухи и, как это ни парадоксально, сильные метели), нарушение тонкого баланса Мирового океана (окисление океана).
Многие мировые лидеры обеспокоены проблемой глобального потепления. В декабре 2015 г. во время Рамочной конвенции ООН об изменении климата было принято Парижское соглашение, которое подписано в апреле 2016 г. 196 странами. Согласно этому соглашению страны обязуются принять меры с тем, чтобы повышение общемировой температуры составило значительно менее 2 °С, а с учетом серьезности существующих рисков — стремиться ограничить рост температуры уровнем 1,5  °С. Стоит отметить, что новый президент США Дональд Трамп недавно объявил о выходе страны из Парижского соглашения по климату.
Для улучшения ситуации предстоит приложить много усилий, в частности ограничить количество выбросов в атмосферу парниковых газов. Решению проблемы будут также способствовать замена угля природным газом, переход на более экологичные виды транспорта. Некоторые ученые предполагают, что для «охлаждения» нашей планеты понадобится применение методов геоинженерии, направленных на активное изменение климатических условий.

_____________________________________________________________________________________________

Катаклизмы Сверхновых Звезд в нашей Галактике.

Звезды, как и люди, не бессмертны. Жизнь их конечна, но заканчивается она по-разному. Если звезда небольшая, то умирает она тихо, по-домашнему, никого из соседей особенно не беспокоя. А вот если она велика, то смерть ее происходит бурно-красиво, как гибель всего большого. Массивные звезды заканчивают взрывом, на несколько дней превращаясь в ослепительно яркую сверхновую, а затем быстро схлопываясь в крохотную нейтронную звезду или вообще в черную дыру с нулевым 
диаметром.
По официальной космологической теории, Солнце взорваться не может. Ни сейчас, ни в будущем. Весу оно немного недобрало, на наше счастье. Еще процентов сорок от сегодняшней массы — и критический барьер был бы преодолен. Но, как говорится, «чуть-чуть — не считается», а сорок процентов — это даже не чуть-чуть.
Однако на одном Солнце свет клином не сошелся. В нашей Галактике еще есть чему взрываться. И если подобный взрыв произойдет где-нибудь не очень далеко от нас, то для Земли он будет иметь весьма существенные последствия. Если, например, взорвется расположенная от нас на расстоянии 4,4 световых года альфа Центавра, то последствия этого взрыва будут таковы: на несколько недель ее яркость, видимая с Земли, увеличится настолько, что она составит примерно 1/6 яркости Солнца. Пылать в Южном полушарии она будет как днем, так и ночью. Ледовая шапка Антарктиды получит мощнейший тепловой удар. Таяние южных ледников приведет к резкому подъему уровня океана, а резкий перепад температур — к образованию многочисленных торнадо. В результате прибрежные города будут просто смыты с лица земли. Но это произойдет лишь спустя несколько суток после того, как на небе появится второе Солнце. А вот радиационный удар жители Южного полушария испытают сразу. Излучение такой мощности, какую нам даст альфа Центавра, магнитное поле Земли остановить уже не сможет. Радиация, достигнув поверхности, если и не убьет, то основательно покорежит все живущее на ней. Количество мутаций вырастет в сотни и тысячи раз, рождение здорового ребенка станет таким же чудом, каким сейчас является рождение сиамских близнецов.
Но и это еще не все. Спустя примерно три десятилетия после того, как альфа Центавра погаснет, до Солнечной системы доберется выброшенное ею облако пыли и газа. Это облако будет настолько плотным, что Солнце в нашем небе поблекнет, яркость его упадет вдвое и на планете наступит новый ледниковый период.
К счастью, альфа Центавра тоже недотягивает до сверхновой. По массе она примерно равна Солнцу. Более реальный кандидат на эту должность — удаленный от нас на 8 световых лет Сириус. Он в два раза тяжелее нашего светила. Но и о нем беспокоиться особо не приходится. Во-первых, последствия от его взрыва будут значительно мягче. Тут обойдется уже без ощутимого теплового удара и пылевой атаки. Да и радиационный удар мы, скорее всего, выдержим. Но в космосе есть еще много звезд, пусть расположенных от нас дальше, чем Сириус, но и гораздо больших по размерам.
В 160 световых годах от Земли, в созвездии Пегаса, сидит ближайший к нам красный гигант по имени Шеат. Его диаметр примерно в 110 раз больше солнечного. Век таких звезд недолог и составляет всего несколько сотен миллионов лет (для сравнения напомним, что динозавры вымерли всего 60 млн. лет назад, а до этого они царили на планете почти 200 млн. лет). Но и Шеат — почти игрушка, если сравнить эту звезду с обитающим в созвездии Кита на расстоянии 230 световых лет от Земли красным гигантом Мирой. Этот объект по размерам превышает наше Солнце в 420 раз. Если бы Мира расположилась в центре нашей системы, то орбиты всех внутренних планет, от Меркурия до Марса включительно, располагались бы в ее чреве, а Юпитер бы вращался от нее в самой непосредственной близости. И эта звезда тоже вполне может рвануть в любой момент. Примерно с теми же последствиями, какие мы описали для альфы Центавра.
Если посмотреть еще дальше, то можно найти и более массивные звезды. На расстоянии примерно 500 световых лет таких уже три. Рас Альгете из созвездия Геркулеса перекрывает диаметр Солнца в 500 раз, Антарес из Скорпиона — в 640, а Бетельгейзе из Ориона — в 750. Диаметр последней приближается к диаметру орбиты Сатурна. Шар по размерам чуть меньший, чем вся наша Солнечная система, и готовый взорваться в любую минуту.
Канадские ученые Дейл Рассел и Тэкер Уоллес объясняют вымирание динозавров резким повышением радиации при взрыве близко от Земли сверхновой звезды. По их словам, взрыв повлек за собой резкое похолодание, а ультрафиолетовое и рентгеновское излучения в течение всего нескольких дней могли увеличиться в сотни раз. Взрыв Бетельгейзе повлечет за собой гораздо более значительные последствия. На нашем небе она на несколько месяцев превратится во вторую луну, причем луну полную и светящую как днем, так и ночью. Про мощность радиационного удара и говорить не хочется. Одно утешение: пыль от Бетельгейзе будет добираться до нас не одну тысячу лет. Так что если человечество сможет пережить саму вспышку, то к нашествию космического мусора оно успеет подготовиться.
А взрыв этот, если верить Брэду Картеру, должен произойти буквально со дня на день. Бетельгейзе, в отличие от многих других известных нам красных гигантов, уже сейчас ведет себя крайне неспокойно. Она постоянно пульсирует, то сжимаясь до размеров Рос Альгете, то вновь расширяясь до прежней величины. А когда в конце прошлого века астрономы засняли гиганта в инфракрасном диапазоне, на снимке обнаружилось, что звезду окружает оболочка газа, в 400 раз превышающая размеры Солнечной системы. По их словам, это может говорить о том, что превращение сверхгиганта в сверхновую уже началось и космического коллапса нужно ждать уже в ближайшие годы.
Есть, правда, еще версия, что Бетельгейзе уже «рванула», причем по человеческим меркам давно — несколько столетий назад. И как раз сейчас ударная волна сверх-жесткого излучения от нее летит к нам. Ведь лету ей — чуть больше четырехсот лет.

 

Комментарии запрещены.

Мой электронный адрес

Если кто хочет со мной связаться, или есть какие то предложение, информации. Об пожеланиях, ошибках и.т.д.. Пишите, вот моя электронная почта:
alavka907@gmail.com

Свежие записи
Ноябрь 2018
Пн Вт Ср Чт Пт Сб Вс
« Окт    
 1234
567891011
12131415161718
19202122232425
2627282930  
Архивы

Ноябрь 2018
Пн Вт Ср Чт Пт Сб Вс
« Окт    
 1234
567891011
12131415161718
19202122232425
2627282930