PostHeaderIcon 1.Темная материя…2.Параллельные миры.3.Сложные научные концепции простым языком.4.Супервспышки на Солнце.5.Бывают ли плоские звёзды?6.В Исландии запущена электростанция…

Темная материя: откуда нам известно о ней?

Темную материю нельзя увидеть или обнаружить с помощью существующих приборов. Так откуда же мы знаем, что она действительно существует?
Представьте, что Вселенная – круглая как торт, и нам необходимо ее разделить на вкусные кусочки. Самая большая часть торта, а именно 68% придется на темную энергию – таинственную силу, наличием которой и объясняется расширение нашей Вселенной. 27% нашего торта составит темная материя. Это та таинственная материя, которая окружает галактики и взаимодействует только посредством гравитации. И лишь 5% остается на привычную нам видимую материю. Из нее сотворены пыль, газы, звезды, планеты и, наконец, люди.
Темная материя получила такое название потому, что она, кажется, никак не взаимодействует с видимой: не сталкивается с ней и не поглощает ее энергию. Ни один из существующих инструментов не может нам помочь обнаружить ее. Мы лишь знаем, что она есть, потому что можем увидеть последствия ее гравитации.
Быть может существование темной материи – это не больше, чем плод воображения ученых-фантастов? Откуда мы можем знать, что она действительно существует, если не имеем понятия, что она представляет собой?
А темная материя действительно существует. И на самом деле, это все, что нам о ней известно. Существование темной материи впервые теоретически обосновал Фриц Звики еще в 1930-е годы, однако современные расчеты сделала Вера Рубин лишь в 1960-е и 70-е года. Она подсчитала, что галактики вращаются быстрее, чем это возможно. Они вращаются с такой скоростью, что уже давно должны были разлететься на куски.
Тогда Рубин предположила, что в центре галактик имеется темная материя, гравитационная сила которой не дает им разрушиться.
За последние несколько лет ученые значительно преуспели в обнаружении темной материи, в основном за счет влияния ее гравитации на путь, который проходит свет, пересекая Вселенную. Под воздействием гравитации темной материи свет искажается.
Астрономы даже смогли использовать темную материю в качестве гравитационной линзы для изучения более отдаленных объектов. Она служит им своего рода телескопом, и при этом ученые не имеют понятия, что она представляет собой. До сегодняшнего дня им так и не удалось захватить частицы темной материи для изучения в лаборатории. Одна из следующих задач Большого адронного коллайдера будет состоять в том, чтобы сгенерировать частицы, соответствующие темной материи, какой ее понимаем мы. Даже если БАК не сможет воссоздать темную материю, то позволит отбросить некоторые теории ее природы.

_______________________________________________________________________________________________

Параллельные миры.

О существовании параллельных миров ученые спорят на протяжении многих лет, но недавно физикам удалось доказать – кроме нашей реальности есть и бесконечное множество реальностей альтернативных.
С научной точки зрения призраки – это оптическое явление. Ведь никто же не удивляется, например, миражам. Иногда их наблюдают тысячи людей. В день битвы при Ватерлоо жители бельгийского городка Вервик увидели в небе марширующую армию. Видение было очень подробным, наблюдатели даже заметили, что у одной пушки сломано колесо. При этом само сражение происходило в ста километрах от города.
Что-то похожее увидели и жители китайского города Хайкоу. 9 мая 2011 года они наблюдали удивительное явление – над заливом возник целый квартал небоскребов. Призрачный мегаполис провисел в небе больше часа, и за это время жители Поднебесной смогли разглядеть его дома и улицы. Многие даже смогли сфотографировать этот таинственный город. Причем, годом раньше, этот же город видели совершенно в другом районе Поднебесной.
Ученые заявили, что это связано с оптическими явлениями в атмосфере, капли воды якобы отразили город, которого нет в этой местности. Но вот загадка – этого города нет ни в Китае, ни в Америке, ни в одной другой стране. Исследователи, которые изучали этот феномен, провели немало дней в архивах. Выяснилось, что город-фантом видели жители разных стран и разных эпох. Британские ученые предположили – это не город-призрак, это реально существующие кварталы, только существуют они в параллельном измерении.
Оказать наличие альтернативной реальности стало возможным после новых открытий квантовой механики. Согласно принципам квантовой механики этот второй параллельный мир существует одновременно с нашим. Получается, что у человека имеется одновременно два будущих, и он одновременно находится в каждом из этих миров. Предсказать, где в следующий раз откроется вход в иное измерение пока невозможно.
Однажды доктора медицинских наук Михаила Филоненко осмотреть дом в дачном поселке. Якобы там все время слышались необычные звуки и время от времени сам по себе включался свет. Ученый приехал, начал исследовать дом и увиденное его просто потрясло – в стене Михаил нащупал дверь, которой никогда не существовало.
Михаил Филоненко вспоминает – ощущение было жуткое, за дверью он увидел черную пустоту, огромное пространство, которого просто не могло быть в загородном доме. Проникнуть туда он не смог, плотность материи пространства была очень большой, перед ним как будто была стеклянная стена. В какой-то момент его просто отбросило от нее. Он понял, что это была дверь в параллельный мир.
Исследователи предположили – через такие червоточины в пространстве в наш мир и приходят те, кого мы называем призраками, но, возможно, в альтернативной реальности они самые обычные существа.

_____________________________________________________________________________________________

Сложные научные концепции простым языком.

Как представить себе чёрную дыру или пространство, в котором больше трёх измерений? Это бывает непросто даже взрослому и вполне образованному человеку. Но как объяснить такие сложные концепции детям? Доступные объяснении специалистов помогут освежить в памяти некоторые научные понятия.
Что такое физика частиц?
ПОЛ СОРЕНСОН, физик:
«Мы сталкиваем друг с другом маленькие штучки, чтобы разбить их в ещё более маленькие штучки до тех пор, пока мы не получим самую маленькую штучку из возможных. Так мы узнаем, из чего состоит вся материя».
Что такое бозон Хиггса?
НИК ГОТЧ, физик:
«Всё вокруг нас сделано из мельчайших деталей, похожих на Lego. Но сами по себе эти вещи из кубиков двигались бы невероятно быстро, как молния. Мы не смогли бы жить в таком мире, — это было бы полное сумасшествие! Так учёные поняли, что должно быть что-то, что замедляет всё вокруг. Нечто похожее на клей, который не даёт вещам разлетаться быстрее, чем мы могли бы моргнуть глазом. Заметьте, как быстро свет распространяется по комнате, когда мы включаем лампу. Но большинство других вещей не может перемещаться так же быстро. И клей этот очень сложно разглядеть. Для этого использовались гигантские машины, огромное количество энергии — только тогда мы смогли его увидеть и теперь точно знаем, что он существует на самом деле».
Что такое механизм Хиггса?
ДЭВИД МИЛЛЕР, физик:
«Представьте себе коктейльную вечеринку: участвующие в ней политики равномерно распределены по помещению, все общаются со своими ближайшими соседями. В комнату входит бывшая премьер-министр, к которой тут же устремляются ближайшие к ней коллеги, образуя вокруг толпу. Из-за постоянного скопления людей вокруг она приобретает большую массу, чем обычно, то есть обладает большей инерцией при той же скорости перемещения по комнате. После начала движения ей уже будет сложно остановиться, а остановившись — начать двигаться снова. В трёхмерном пространстве и с учётом всех релятивистских усложнений, это и есть механизм Хиггса. Для того чтобы придать элементарным частицам массу, мы вводим дополнительное фоновое поле, которое локально искажается при перемещении частиц через него. Это искажение — кластеризация поля вокруг частицы — и порождает её массу».
Как работает иммунитет и что такое лектины типа C.
АНА ЛОБАТО, иммунолог:
«Наше тело не очень-то любит гостей, особенно тех, кто не похож на друзей. Когда кто-то попадает внутрь, наши клетки «смотрят» на них разными видами глаз. Разные «глаза» видят различные фигуры и формы, поэтому они могут понять, что это за пришельцы и как с ними поступить. Они не похожи на обычные глаза, а действуют как маленькие ручки, которые трогают предметы. Я изучаю только один тип этих «глаз», который «видит» странные вещи, похожие на плесень, растущую на испорченной еде. Но эти «глаза» не делают всё в одиночку. У них много друзей-помощников, и чем их больше, тем лучше. Все вместе они нападают на незнакомца и съедают его. После того, как поедят, они показывают остатки друзьям, чтобы и те знали, с какими плохими парнями стоит воевать. Таким образом наше тело защищает нас от болезней».
Насколько мощным может быть квантовый компьютер?
УМЕШ ВАЗИРАНИ, профессор Калифорнийского университета:
«Есть древняя легенда. По-моему, она о Бирбале — великом визире при дворе могольского императора Акбара. Император был настолько доволен его службой, что спросил, каким подарком он мог бы его отблагодарить. Министр в ответ пожелал рис. Он попросил на первую клетку шахматной доски положить одно зерно, на вторую — два, на третью — четыре и т. д. Казначей начал отсчитывать зёрна риса, и, прежде чем они дошли до конца шахматной доски, весь амбар опустел. Точно так же квантовый алгоритм исчислений показывает прирост мощности по экспоненте».
Как наглядно показать чёрную дыру?
РОБЕРТ ФРОСТ, специалист по образовательным инструкциям:
«Возьмите большой кусок пищевой плёнки, растяните его в руках и положите в центр небольшой шарик, чтобы тот образовал прогиб из-за своего веса. Капните несколько капель воды на лист и посмотрите, как они скатятся по плёнке прямо к шарику. Это покажет, как работает гравитация. Уберите шарик и дайте ребёнку пальцем почувствовать плёнку и понять — чем сильнее её оттягивать (чем тяжелее объект), тем сильнее получается воронка. Затем попросите ребёнка сделать дыру посередине плёнки, которая будет изображать очень и очень тяжёлый объект. Через это отверстие будут проскакивать капли воды. Выходит, что чёрная дыра — это настолько тяжёлый объект, что он искривляет пространство. Всё, что попадает в него (как капли), никогда не возвращается обратно». 
Почему рухнул банк Lehman Brothers (отправная точка мирового экономического кризиса 2008 года)?
НЭТАН МАЙЕРС, экономист:
«Один парень купил 10 «Сникерсов» в магазине по $ 1 каждый и за день в школе продал их по $ 1,5. Он подумал, что если это было так легко, то на следующий день он мог бы продать 100 шоколадок. Чтобы купить 100 «Сникерсов», ему пришлось занять у друзей по $ 10. Но когда он пришёл в школу на следующий день, в холле уже стоял вендинговый автомат, который продавал шоколадки по 75 центов. Разумеется, никто не хотел покупать у него их по $ 1,5, так что ему тоже пришлось снизить цену до 75 центов. В итоге тех денег, что ему удалось выручить, не хватило даже для того, чтобы вернуть долги друзьям, и те его поколотили». 
Как представить многомерное пространство Вселенной?
ГРЕГ ЛАНДСБЕРГ, физик:
«Представьте себе, что муравей ползёт по листу бумаги, который вы держите в своей руке. Для муравья его «вселенная» в значительной степени двумерная, так как он не может покинуть поверхность бумаги. Он знает, что есть только Север, Юг, Восток и Запад, но перемещаться вверх и вниз ему нет никакого смысла до тех пор, пока он должен остаться на листе бумаги. В значительной степени и мы точно так же удержаны в трёхмерном мире, который на самом деле является частью более сложной многомерной Вселенной.
Как считают физики, дополнительные пространственные измерения, если они действительно существуют, — свёрнуты. Возвращаясь к примеру с муравьём: мы можем скрутить лист бумаги так, чтобы он образовал цилиндр. В этом случае, если муравей начинает ползти в одном направлении, он в конечном итоге вернётся к той точке, от которой начинал своё движение. Это пример компактифицированного измерения. Если муравей ползёт параллельно длине цилиндра, он никогда не вернётся к исходной точке (особенно если мы представим, что бумажный цилиндр бесконечно длинный). Это пример «плоского» измерения. Согласно теории струн, мы живём в мире, где три знакомые нам измерения пространства — плоские; но есть дополнительные измерения, которые скручены в очень малый радиус 10 см в -30 степени или даже меньше».

_________________________________________________________________________________________

Ученые оценили последствия «супервспышки» на Солнце.

Физики предсказывают, что «супервспышка», способная уничтожить энергосистемы, электронику, навигацию и связь, может произойти на Солнце в течение ближайших ста лет.
Время от времени на Солнце происходят взрывные выделения энергии – вспышки, которые охватывают все слои атмосферы звезды, в считанные секунды выделяя сотни миллиардов мегатонн в тротиловом эквиваленте. Помимо непосредственно фотонов, солнечные вспышки выбрасывают в космос быстрые потоки плазмы, которые через несколько дней достигают орбиты Земли, и если в этот момент планета окажется на пути, бомбардируют ее заряженными частицами. 
Такая встреча может вызывать сильные геомагнитные бури, приводить к сбоям в работе электроники, а особенно – систем навигации и связи, которые используют орбитальные аппараты. Но случаются и особенно мощные «супервспышки», воздействие которых ярко ощущается даже на Земле. В 1859 г. одна из них вывела из строя телеграф по всей Европе и Северной Америке, а другая в 1989 г. привела к отказу работы энергосетей в Канаде. 
Известный астрофизик из Гарвардского университета Абрахам Лёб и его коллега Манасви Лингам рассмотрели возможные последствия таких «супервспышек» для современного человечества, которое намного больше полагается на чувствительные электрические, электронные и спутниковые системы. Статья ученых опубликована в The Astrophysical Journal. 
«Солнце обычно воспринимается как друг, как источник жизни, но оно может быть и чем-то противоположным, – говорит Ави Лёб. – Все зависит от обстоятельств». По его данным, наиболее мощные и опасные «супервспышки» на солнцеподобной звезде могут происходить каждые 20 млн лет. Такие события способны разрушать озоновый слой и приводить к масштабной гибели экосистем. Однако для цивилизации опасность представляют и «супервспышки» поменьше. 
Ученые подсчитали, что вспышка, подобная той, что была зарегистрирована в 1859 г., сегодня способна нанести ущерб величиной порядка 10 трлн долларов, повредив энергосистемы и сети коммуникаций, оставив «дыры» в озоновом слое. По их оценкам, такая «супервспышка» наверняка случится в течение ближайших 100 лет – и с вероятностью 12 процентов произойдет в следующее десятилетие. Авторы стараются привлечь внимание к этой проблеме – с тем чтобы человечество воспринимало Солнце хотя бы с такой же серьезностью, с какой воспринимается сегодня астероидная угроза. Источник: naked-science.ru

_______________________________________________________________________________________________

Бывают ли плоские звёзды?

И все же в космосе есть великое множество объектов, которые вполне соответствуют столь экстравагантному титулу. Их научное название — аккреционные диски. Звезды, подобно людям, предпочитают объединяться в пары — так называемые бинарные системы. Это столь частое явление, что классик американской астрономии Цецилия Пейн-Гапочкин, которая первой доказала, что вещество Вселенной в основном состоит из водорода, как-то пошутила, что три из двух выбранных наудачу звезд входят в состав какой-нибудь бинарной системы. 
Сбежать к соседу.
Для определенности сначала остановимся на бинарных системах, состоящих из нормальных (то есть сжигающих водород) звезд главной последовательности, обращающихся вокруг единого центра инерции. Каков типичный механизм переноса вещества внутри достаточно тесной звездной пары? Как правило, обе звезды порождены одним и тем же молекулярным облаком и потому имеют одинаковый состав, но различные начальные массы. Более тяжелая звезда первой сжигает запасы водорода, теряет стабильность, многократно увеличивается в размере и превращается в красный гигант. При этом она может не только заполнить свою полость Роша, но и выйти за ее пределы. В таком случае центр звезды уже не сможет удержать своим тяготением вещество раздувшейся оболочки, и звезда начнет терять вещество. Значительная часть этого газа пройдет сквозь горловину на стыке полостей Роша и попадет в гравитационный плен к звезде-компаньонке. Из-за исхудания звезды-донора ее полость Роша будет стягиваться, из-за чего скорость утечки вещества со временем увеличится. Даже когда сравняются массы звезд, утечка только замедлится, но не прекратится вовсе.
Перенос вещества знаменует начало сложной эволюции звездной пары. Вторая (менее массивная) звезда захватывает материю соседки и увеличивает свой угловой момент. Чтобы сохранить суммарный момент бинарной системы, звезды сближаются. Позже, когда первая звезда становится легче компаньонки, они начинают расходиться — опять же в силу сохранения общего углового момента. Однако если вторая звезда успеет выйти за границы своей полости Роша, она тоже окажется обречена на потерю плазмы. 
Эти превращения чреваты различными исходами, и астрономы пока не умеют их точно моделировать. Однако не подлежит сомнению, что часть выброшенной материи выходит на орбиты, целиком окружающие звездную пару. Чаще всего эта материя образует плоское вращающееся кольцо, которое называется диском экскреции (от лат. excretio — «выделение»). В особых обстоятельствах звездная пара может даже утонуть в шарообразном газовом облаке, порожденном ушедшей в пространство плазмой. В то же время каждая звезда имеет шансы обзавестись своим собственным колечком поменьше и поплотнее — аккреционным диском (accretio, «прирост»). Возможны и более экзотические сценарии (такие как столкновение и слияние звезд или же съедение соседки более крупной звездой), но в такие дебри мы не станем даже заглядывать.
До сих пор речь шла о нормальных звездных парах, но для запуска аккреции вполне достаточно, чтобы всего один партнер обладал газовой оболочкой, способной раздуваться и уходить сквозь горловину полости Роша. Поэтому аккреция возникает, и когда бинарная система объединяет обычную звезду с телом из вырожденной материи, то есть белым карликом, или нейтронной звездой, или даже с черной дырой (исторически аккреционные диски впервые обнаружили при наблюдении белых карликов, имеющих в компаньонах обычные звезды). Более того, именно такие аккреционные процессы имеют наиболее эффектные последствия. Хорошие примеры — взрыв сверхновой типа Iа, обусловленный длительной аккрецией на поверхность белого карлика, почти достигшего верхнего предела своей массы, а также возникновение рентгеновского пульсара, вызванное аккрецией на сильно намагниченную нейтронную звезду. Тем не менее аккреционные диски в системах обычных двойных звезд более типичны — хотя бы потому, что таких пар гораздо больше. 
Центрами аккреции могут оказаться и одиночные космические объекты. Любое тело, окруженное газовой или газопылевой средой, притягивает ее частицы, и они могут либо на его поверхность, либо формировать аккреционный диск (что с успехом делают молодые звезды, недавно сформировавшиеся из газопылевых облаков). Однако все же наиболее интересные феномены наблюдаются в аккреционных дисках, возникших в тесных бинарных системах. 
Полости Роша.
Каждая звезда окружена областью пространства, где господствует ее собственное притяжение, а не гравитация соседки. Размер этой зоны, естественно, зависит от массы звезды. Если такие области пересечь плоскостью, в которой движутся оба светила, получится нечто вроде восьмерки — две вытянутые в линию петельки с единственной общей точкой на отрезке, соединяющем звездные центры (для большей наглядности придется остановить время, ведь эта фигура вращается). В этой точке каждая из звезд тянет в свою сторону с одинаковой силой, и суммарный вектор гравитации оказывается равным нулю. Ее называют первой точкой Лагранжа, хотя вообще-то двумя десятками лет ранее ее выявил Леонард Эйлер.
Пространственные пузыри, о которых идет речь, математически описал Эдуард Рош, французский астроном и математик XIX века, и в его честь их именуют полостями Роша. Космические частицы внутри полости Роша могут вращаться лишь вокруг той звезды, которую эта полость охватывает. Эта же теория утверждает, что вещество может перетекать между звездами сквозь горловину, соединяющую полости, то есть через окрестности первой точки Лагранжа. Материя, которая находится вне полостей, может стабильно обращаться вокруг звездной пары в целом, но ее траектории не ограничиваются путями, охватывающими одну-единственную звезду. 
Вся сила в трении.
Природа, как известно, сложнее всякой теории. Потерянная звездой-донором материя может мигрировать не только сквозь узкое сопло на стыке полостей Роша, но и более сложным путем, однако в любом случае не покидает орбитальной плоскости бинарной системы. Аккреционные диски возникают тем легче, чем меньше расстояние между космическими компаньонами и геометрический размер тела, к которому движутся плазменные потоки. Это легко понять — члены пары вращаются друг вокруг друга, и у частиц больше шансов не упасть на малую цель, а выйти на охватывающую ее орбиту. Поэтому аккреция на белые карлики, нейтронные звезды и черные дыры- самый эффективный механизм дискообразования. Дело это не быстрое, годовая скорость транспорта вещества от звезды-донора не превышает миллиардной доли солнечной массы. Сначала «принимающее» тело обзаводится свитой в виде узкого кольца, а диск формируется позднее. 
Частицы внутри него имеют разные скорости, которые, в соответствии с третьим законом Кеплера, возрастают по мере приближения к центральному телу (именно поэтому Меркурий обращается вокруг Солнца быстрее, нежели Земля). В результате в веществе диска возникает внутреннее трение, которое гасит кинетическую энергию частиц и заставляет их двигаться по спиральным траекториям. Некоторые частицы в конце концов падают на поверхность притягивающего объекта, будь то атмосфера обычной звезды, твердая корка звезды нейтронной или горизонт событий черной дыры. Так что диск непрерывно теряет вещество, но в то же время непрерывно получает новое от звезды-донора.
Это же трение нагревает вещество диска и превращает его в источник электромагнитного излучения. Диск становится светящимся объектом — фигурально говоря, плоской звездой. В максимуме температура внутренней зоны диска может составлять десятки миллионов градусов. Этого достаточно для генерации рентгеновских квантов, что и происходит в дисках вокруг нейтронных звезд и черных дыр звездной массы. Центральная зона такого диска светит ультрафиолетом, а внешняя, чья температура обычно не превышает температуры солнечной поверхности, испускает лучи видимого спектра. Как правило, диски вокруг белых карликов не нагреваются более чем до 20 000 градусов и их спектр не простирается дальше ультрафиолетовой зоны. Самые холодные аккреционные диски, окружающие протозвезды и молодые звезды, способны генерировать лишь инфракрасное излучение. Таким образом, по ширине спектра излучения плоские звезды не уступают обычным. 
Идея фрикционного (обусловленного трением) нагрева диска выглядит простой и естественной, однако это всего лишь видимость. Подобный нагрев нельзя объяснить простым столкновением газовых молекул — в этом случае температуры внутри диска будут много ниже наблюдаемых в действительности. Пока его механизмы понятны лишь в общих чертах, но, как говорится, дьявол скрывается в деталях. Одна из весьма популярных ныне теорий объясняет генерацию тепла возникновением магнитно-ротационной нестабильности — турбулентных вихревых потоков, связанных магнитными полями. Так ли это, еще предстоит выяснить.
Живой и светится.
Аккреционные диски не перестают удивлять астрономов. Профессор Техасского университета Крейг Уилер как-то отметил, что они живут своей собственной жизнью. Аккреционный диск способен изменять светимость, причем в весьма широких пределах. Это не универсальное правило — некоторые диски стабильно излучают электромагнитную энергию, а некоторые вспыхивают лишь время от времени. Как раз такое поведение характерно для дисков, окружающих компактные объекты — белые карлики, нейтронные звезды и черные дыры. 
Наиболее типичная (но отнюдь не единственная) причина таких вспышек состоит в том, что интенсивность фрикционного нагрева диска в значительной мере зависит от его температуры. При нагреве не выше нескольких тысяч градусов вещество диска прозрачно для инфракрасного излучения и быстро теряет тепло. В этих условиях трение довольно слабое, частицы диска не особенно тормозятся и в большинстве остаются на стабильных орбитах, не стягивающихся к центру аккреции. 
Однако температура диска определяется также его плотностью, которая связана с темпом поступления вещества от звезды-донора. Если она подпитывает диск достаточно щедро, плотность его вещества растет, диск постепенно теряет прозрачность и все лучше удерживает тепло. Поскольку он при этом нагревается, прозрачность еще сильнее уменьшается, и это опять же подхлестывает рост температуры. Вещество становится очень горячим, начинает ярко светиться, излучая все больше и больше коротковолновых фотонов. Диск вспыхивает, подобно переменной звезде, быстро увеличивая блеск до разрешенного природой максимума.
А затем опять вмешивается трение. Оно становится настолько большим, что тормозит молекулы во внешней части аккреционного диска. Они теряют скорость и мигрируют к центру диска, вследствие чего периферийная зона становится более разреженной и посему прозрачной для радиации. Процесс поворачивается в обратную сторону — диск теряет тепло с внешнего края, охлаждается, делается прозрачней и, соответственно, охлаждается еще сильнее. В конце концов температура всего диска снижается настолько, что он опять превращается в источник одного лишь инфракрасного излучения. Поскольку аккреция со звезды-донора не прекращается, диск начинает греться — и цикл повторяется заново. 
Естественно, что такие циклы различны для разных дисков — все зависит от конкретных условий. Продолжительность холодной стадии может изменяться в широких пределах — от недель до десятков лет. В этой фазе диск практически невидим, разве что уж очень настойчиво приглядываться к нему с помощью инфракрасной аппаратуры. Длительность горячей фазы и, соответственно, высокой яркости диска в среднем в десять раз короче. Поэтому в тесной двойной системе типичный аккреционный диск в каком-то смысле ведет себя подобно электрическому конденсатору, который долго копит энергию и потом быстро разряжается. Интересно, что даже если звезда-донор поставляет вещество с постоянной скоростью, диск все равно периодически мигает и гаснет. Как и сердце красавицы, он склонен если не к измене, то к перемене. 
Диски и катаклизмы.
Для иллюстрации богатых возможностей аккреционных дисков рассмотрим обширный класс космических объектов, объединенных общим названием «катаклизмические переменные». Это тесные бинарные системы, состоящие из звезды главной последовательности (обычно из самых легких, но порой и красного гиганта) и белого карлика. Они проявляют себя весьма нестабильным излучением (отсюда и название), которое в немалой степени обусловлено наличием аккреционного диска.
Практически все катаклизмические переменные испускают свет и тепло не только из срединных и центральных зон аккреционных дисков, но и из области на стыке горловины полости Роша и внешнего края диска. Ее называют горячим пятном — и есть за что. Газовые частицы, приходящие от звезды-донора, на этом участке сталкиваются с материей аккреционного диска и сильно ее нагревают. Светимость горячего пятна может превосходить светимость внутренних зон диска, хотя размер его значительно меньше. 
Известно несколько разновидностей катаклизмических переменных. К одной из них относятся классические новые звезды (или просто новые). В этих системах вещество аккреционного диска в изобилии падает на поверхность белого карлика со скоростью около тысячи километров в секунду. Более 90% этого вещества состоит из водорода и поэтому может служить топливом для термоядерных реакций. Для их запуска надо, чтобы водород разогрелся до критической температуры порядка 10 млн градусов. Поскольку эти реакции интенсивно выделяют энергию, на поверхности белого карлика возникают ударные волны, которые буквально взрывают его внешний слой и выбрасывают сверхгорячую плазму в окружающее пространство. В это время светимость системы возрастает на 3−6 порядков. По завершении вспышки белый карлик принимается копить на поверхности новый запас водорода — горючее для очередного взрыва. Согласно теории, классические новые могут загораться с интервалом в 10000 лет, но до сих пор этого еще не наблюдали (что и неудивительно — история астрономии значительно короче).
Другой вид катаклизмических переменных — повторные новые. Они увеличивают яркость гораздо скромнее, максимум в тысячу раз, зато вспыхивают каждые 10−100 лет. Механизм таких вспышек пока точно не известен. Есть еще карликовые новые, светимость которых возрастает лишь десятикратно в течение недель или месяцев. Не исключено, что это обусловлено фрикционным перегревом аккреционного диска, однако такое объяснение не вполне общепринято. 
Окольцевать черную дыру.
Самые большие аккреционные диски имеются у сверхмассивных черных дыр в центрах галактик. Основным источником материи для таких дисков служат горячие молодые звезды, чье излучение активно выбрасывает в пространство плазму с внешних оболочек (это явление называют звездным ветром). Как рассказал «ПМ» профессор астрономии Мичиганского университета Джон Миллер, эти диски нагреваются примерно до таких же температур, что и диски вокруг белых карликов, и поэтому в основном генерируют ультрафиолетовое излучение. Это может показаться странным, поскольку вес самих дыр составляет миллионы и миллиарды солнечных масс. Однако дело в следующем: поверхность подобного диска столь обширна, что быстро излучает тепло — по той же причине чай в блюдечке стынет много быстрее, нежели в чашке. 
«За последние годы достигнут значительный прогресс в изучении потоков частиц в аккреционных дисках, окружающих черные дыры различного калибра, — говорит профессор Миллер. — Внутренние края таких дисков могут настолько приблизиться к границе черной дыры, что попадут в области, где уже работает общая теория относительности. Спектральный анализ исходящего оттуда излучения обещает немало интересного. Аккреционный диск может служить своеобразным индикатором вращения черной дыры. Теория утверждает, что внутренний край диска должен подойти к горизонту событий вращающейся дыры ближе, чем к горизонту дыры той же массы с нулевым угловым моментом. Уже есть приборы, способные обнаружить этот эффект и тем самым выявить вращение черной дыры. Вполне возможно, в ближайшем будущем это удастся». Источник: popmech.ru

____________________________________________________________________________________________

В Исландии запущена электростанция с отрицательным уровнем выбросов.

По мнению ученых-экологов, если не будут сокращены выбросы углекислого газа, то уже в ближайшие десятилетия могут наступить необратимые климатические изменения. 
Швейцарскому стартапу Climeworks удалось переоборудовать геотермальную электростанцию в Исландии таким образом, что помимо своей основной функции – обеспечения электроэнергией, она улавливает СО2 из воздуха, после чего превращает его в твердую породу. В таком состоянии он может находиться миллионы лет. 
Сегодня уже недостаточно лишь сократить выбросы углекислого газа. Чтобы избежать разрушительных последствий изменений климата, предстоит снизить среднюю глобальную температуру примерно на 2 °С. Для этого придется улавливать СО2, превращать в твердое состояние и складировать где-то под землей. Этот процесс носит название «технология улавливания и хранения углерода», которую уже много лет продвигает компания Climeworks. 
С помощью специального фильтра, изготовленного из пористых гранул, СО2, соединяясь с влагой из воздуха, задерживает частицы вещества. После этого тепло от геотермальной электростанции высвобождает чистый углекислый газ, который закачивается под землю на 700-метровую глубину. Там он вступает в реакцию с базальтовыми породами и превращается в камень. 
Пока производительность Climeworks позволяет улавливать 50 тонн СО2 в год. Однако к 2025 году стартап намерен выйти на более высокие показатели — до 1 % мировых выбросов углекислого газа.

Комментарии запрещены.

Мой электронный адрес

Если кто хочет со мной связаться, или есть какие то предложение, информации. Об пожеланиях, ошибках и.т.д.. Пишите, вот моя электронная почта:
alavka907@gmail.com

Свежие записи
Сентябрь 2018
Пн Вт Ср Чт Пт Сб Вс
« Авг    
 12
3456789
10111213141516
17181920212223
24252627282930
Архивы

Сентябрь 2018
Пн Вт Ср Чт Пт Сб Вс
« Авг    
 12
3456789
10111213141516
17181920212223
24252627282930