PostHeaderIcon 1.Удивительные факты о Вселенной.2.Галактика со вспышкой звездообразования.3.Техническое зрение.4.Темные светила.5.Таинственный джет квазара.6.Мимас.

Удивительные факты о Вселенной.

В этот список малоизвестных фактов о Вселенной вошли совершенно невообразимые вещи: от планет, покрытых горящим льдом до бриллиантов, превосходящих размером нашу планету.
Масса Солнца составляет 99 процентов общей массы вещества в Солнечной системе.
В нашей Вселенной существует планета под названием HD189733b, где идут дожди из стекла.
Путешествие фотона от ядра Солнца до его поверхности занимает 170 тысяч земных лет.
И ещё 8 минут потребуется на то, чтобы фотон, оторвавшись от поверхности Солнца, достиг наших глаз.
В созвездии Орла существует газовое облако, содержащее такое количество алкоголя, которого хватило бы для производства 200 септиллионов (1024) литров пива.
Навозные жуки, столь примитивные на вид создания, оказывается, могут использовать для навигации свое положение относительно Млечного Пути.
В 33 световых годах от Земли находится экзопланета (так называют планеты вне Солнечной системы), поверхность которой полностью покрыта горящим льдом.
Во Вселенной каждый день появляется около 275 миллионов новых звезд.
Гора Олимп, самая высокая в Солнечной Системе, находится на Марсе. Она в 3 раза выше Эвереста и буквально пронзает насквозь атмосферу Марса.
Кроме того, она обладает гигантской шириной: если бы мы встали на краю ее кратера, основание вулкана оказалось бы за линией горизонта.
Вращение Земли замедляется примерно на 17 милисекунд каждое столетие.
Один день на Венере длится дольше, чем год, поскольку один оборот вокруг Солнца планета совершает быстрее, чем оборот вокруг собственной оси.
В пределах нашей галактики существует небесное тело, представляющее собой цельный алмаз и превосходящее размером Землю.
Масса одной чайной ложки вещества нейтронной звезды составляет около миллиарда тонн.
На околоземной орбите насчитывается более 8 тысяч предметов, относящихся к космическому мусору.
С каждым годом Луна удаляется от Земли на 3,8 сантиметров.
Если бы кому-то удалось поместить Сатурн в гигантский резервуар с водой, планета осталась бы плавать на поверхности (по расчётам астрономов плотность Сатурна составляет всего 0,687 г/см³, что меньше плотности воды).

_____________________________________________________________________________________________

Галактика со вспышкой звездообразования.

Галактика со вспышкой звездообразования — галактика, в которой рождение новых звёзд, по сравнению с аналогичным процессом в большинстве галактик, происходит с исключительно высокой скоростью. Вспышка звездообразования в галактике наблюдается чаще всего после столкновения двух галактик или близкого прохода одной возле другой. Скорость звёздообразования в такой галактике столь высока, что, если бы она (скорость) оставалась постоянной, запасы газа, из которого формируются звёзды, истощились бы за время, много меньшее периода активной жизни галактики. По этой причине считается, что подобные вспышки носят временный характер. Среди хорошо известных таких галактик — M82, галактики Антенны (NGC 4038 и NGC 4039) и IC 10.
Определения.
Существует несколько определений термина «галактика со вспышкой звездообразования», но строгого определения, с которым были бы согласны все астрономы, нет. Тем не менее, многие в общем и целом согласны, что определение должно так или иначе учитывать следующие три фактора:
1. скорость, с которой газ превращается в звёзды (скорость звездообразования);
2. доступное количество газа, из которого могут образовываться звёзды;
3. сравнение временно́го масштаба звёздообразования и возраста или периода вращения галактики.
Среди широко известных определений можно встретить:
• Продолжающееся звездообразование, которое при данной скорости исчерпало бы запасы газа за время, много меньшее возраста Вселенной (время Хаббла). Это определение иногда называют «правильным» определением.
• Продолжающееся звездообразование, которое при данной скорости исчерпало бы запасы газа за время, много меньшее галактики (возможно, один период обращения для спиральных галактик).
• Если текущая скорость звездообразования, поделённая на среднюю скорость в прошлом, много больше единицы. Это соотношение называют «коэффициентом рождаемости».
Пусковые механизмы.
Галактика «с демографическим взрывом», расположенная в 12,2 млрд. св. лет от нас, — ежегодно в ней рождается 4000 новых звёзд.
Для начала такого активного процесса необходимо сконцентрировать большое количество холодного молекулярного газа в относительно небольшом объёме. Высокие концентрации и возмущения считаются основными факторами, приводящими к глобальной вспышке звездообразования при столкновении галактик, хотя точный механизм запуска до конца не понят.
Продолжительные наблюдения показали, что вспышка звездообразования в диске галактики часто возникает в случае сливающихся или взаимодействующих галактик. В настоящее время считается, что взаимодействия соседствующих галактик без их слияния могут спровоцировать появление нестабильных режимов вращения (например, нестабильности галактического бара), что заставляет межзвёздный газ устремляться к центру галактики, где возле ядра вскоре начинается вспышка.
Типы вспышек звездообразования.
Классификация в этой области не совсем простая задача, потому что галактики, в которых началась вспышка звездообразования, собственно, не представляют какой-то особый тип галактик. Вспышки могут происходить в дисковых (спиральных) галактиках, в неправильных — часто наблюдаются точечные области вспышек, нередко распространённые по всей галактике. И всё же астрономы выделяют несколько различных типов вспышек звездообразования:
• Компактные голубые галактики.
• Ультрасветящиеся инфракрасные галактики.
• Галактики Вольфа — Райе.
• Галактики «с демографическим взрывом».

_______________________________________________________________________________________________

В России изобрели «техническое зрение», не имеющее аналогов в мире.

Удаленное наблюдение с целью сбора разведданных сталкивается с массой проблем. Например, с погодными условиями или различными помехами. Но вскоре, как сообщается, большинство из них могут перестать оказывать существенное влияние на устройства наблюдения, ведь была представлена новейшая технология «технического зрения».
Инновационная разработка позволяет вести наблюдение с беспилотников, самолетов и кораблей в любую погоду и время суток, а за ее разработку отвечают инженеры-кораблестроители НПП «Салют» совместно с учеными Московского авиационного института. Как пояснили представители пресс-службы,
«Сейчас Московский авиационный институт и НПП «Салют», дочернее предприятие концерна «Моринформсистема — Агат», ведут переговоры о совместной работе над инновационной технологией «технического зрения» на базе гомодинного радиолокационного датчика микроволнового диапазона. Предназначена разрабатываемая система для мониторинга зон высокой ответственности в условиях ограниченной оптической видимости: туман, снег, задымленность, дождь, пыль».
Созданная и уже протестированная система «технического зрения» на базе гомодинного радиолокационного датчика микроволнового диапазона является малогабаритной, всепогодной и высокоинформационной. Она позволит буквально видеть сквозь бурю или ливень, в отличие от других датчиков, которые будут показывать по большей части только помехи. Как рассказал директор по развитию гражданской продукции и инновациям концерна «Моринформсистема — Агат» Станислав Чуй,
«Уверен, что система «технического зрения» найдет применение на многих объектах транспорта: железной дороге, малой авиации, беспилотных летательных аппаратах, автомобилях, малых судах, а также в интегрированных системах охраны различных объектов».
Сейчас уже завершены все исследовательские работы, получен соответствующий патент и создан демонстрационный макет установки. По материалам: hi-news.ru

_____________________________________________________________________________________________

Темные светила: коричневые карлики.

Коричневые карлики — космические тела с массой 1−8% солнечной. Они слишком массивны для планет, гравитационное сжатие делает возможным термоядерные реакции с участием «легкогорючих» элементов. Но для «зажигания» водорода их масса недостаточна, и поэтому, в отличие от полноценных звезд, светят коричневые карлики недолго.
Астрономы не ставят экспериментов — они получают информацию с помощью наблюдений. Как сказал один из представителей этой профессии, не существует настолько длинных приборов, чтобы ими можно было дотянуться до звезд. Однако в распоряжении астрономов имеются физические законы, которые позволяют не только объяснять свойства уже известных объектов, но и предсказывать существование еще не наблюдавшихся. 
Предвидение Шива Кумара.
Про нейтронные звезды, черные дыры, темную материю и иные космические экзоты, вычисленные теоретиками, наслышаны многие. Однако во Вселенной немало и других диковинок, открытых тем же способом. К их числу относятся тела, занимающие промежуточное положение между звездами и газовыми планетами. В 1962 году их предсказал Шив Кумар, 23-летний американский астроном индийского происхождения, только что защитивший докторскую диссертацию в Мичиганском университете. Кумар назвал эти объекты черными карликами. Позднее в литературе фигурировали такие имена, как черные звезды, объекты Кумара, инфракрасные звезды, однако в конце концов победило словосочетание «коричневые карлики», предложенное в 1974 году аспиранткой Калифорнийского университета Джилл Тартер.
Кумар шел к своему открытию четыре года. В те времена основы динамики рождения звезд уже были известны, но в деталях оставались изрядные пробелы. Однако Кумар в целом столь верно описал свойства своих «черных карликов», что впоследствии с его заключениями согласились даже суперкомпьютеры. Все-таки человеческий мозг как был, так и остается лучшим научным инструментом. 
Рождение недозвезд.
Звезды возникают в результате гравитационного коллапса космических газовых облаков, которые в основном состоят из молекулярного водорода. Кроме того, там имеется гелий (один атом на 12 атомов водорода) и следовые количества более тяжелых элементов. Коллапс завершается рождением протозвезды, которая становится полноправным светилом, когда ее ядро разогревается до такой степени, что там начинается устойчивое термоядерное горение водорода (гелий в этом не участвует, поскольку для его поджога нужны температуры в десятки раз выше). Минимальная температура, необходимая для воспламенения водорода, составляет около 3 млн градусов. 
Кумара интересовали самые легкие протозвезды с массой не выше одной десятой массы нашего Солнца. Он понял, что для запуска термоядерного горения водорода они должны сгуститься до большей плотности, нежели предшественники звезд солнечного типа. Центр протозвезды заполняется плазмой из электронов, протонов (ядер водорода), альфа-частиц (ядер гелия) и ядер более тяжелых элементов. Случается, что еще до достижения температуры поджога водорода электроны дают начало особому газу, свойства которого определяются законами квантовой механики. Этот газ успешно сопротивляется сжатию протозвезды и тем препятствует разогреву ее центральной зоны. Поэтому водород либо вообще не зажигается, либо гаснет задолго до полного выгорания. В таких случаях вместо несостоявшейся звезды формируется коричневый карлик.
Кумар вычислил, что минимальная масса нарождающейся звезды равна 0,07 массы Солнца, если речь идет о сравнительно молодых светилах популяции I, которым дают начало облака с повышенным содержанием элементов тяжелее гелия. Для звезд популяции II, возникших более 10 млрд лет назад, во времена, когда гелия и более тяжелых элементов в космическом пространстве было гораздо меньше, она равна 0,09 солнечной массы. Кумар нашел также, что формирование типичного коричневого карлика занимает около миллиарда лет, а его радиус не превышает 10% радиуса Солнца. Наша Галактика, как и другие звездные скопления, должна содержать великое множество таких тел, но их трудно обнаружить из-за слабой светимости. 
Как они зажигаются.
Со временем эти оценки не особенно изменились. Сейчас считают, что временное возгорание водорода у протозвезды, родившейся из относительно молодых молекулярных облаков, происходит в диапазоне 0,07−0,075 солнечной массы и длится от 1 до 10 млрд лет (для сравнения, красные карлики, самые легкие из настоящих звезд, способны светить десятки миллиардов лет!). Как отметил в беседе с «ПМ» профессор астрофизики Принстонского университета Адам Барроуз, термоядерный синтез компенсирует не более половины потери лучистой энергии с поверхности коричневого карлика, в то время как у настоящих звезд главной последовательности степень компенсации составляет 100%. Поэтому несостоявшаяся звезда охлаждается даже при работающей «водородной топке» и тем более продолжает остывать после ее заглушки.
Протозвезда с массой менее 0,07 солнечной поджечь водород вообще не способна. Правда, в ее недрах может вспыхнуть дейтерий, поскольку его ядра сливаются с протонами уже при температурах в 600−700 тысяч градусов, порождая гелий-3 и гамма-кванты. Но дейтерия в космосе немного (на 200 000 атомов водорода приходится всего один атом дейтерия), и его запасов хватает всего на несколько миллионов лет. Ядра газовых сгустков, не достигших 0,012 массы Солнца (что составляет 13 масс Юпитера) не разогреваются даже до этого порога и поэтому не способны ни к каким термоядерным реакциям. Как подчеркнул профессор Калифорнийского университета в Сан-Диего Адам Бургассер, многие астрономы полагают, что именно здесь и проходит граница между коричневым карликом и планетой. По мнению представителей другого лагеря, коричневым карликом можно считать и газовый сгусток полегче, если он возник в результате коллапса первичного облака космического газа, а не родился из газо-пылевого диска, окружающего только что вспыхнувшую нормальную звезду. Впрочем, любые подобные определения — дело вкуса.
Еще одно уточнение связано с литием-7, который, как и дейтерий, образовался в первые минуты после Большого взрыва. Литий вступает в термоядерный синтез при несколько меньшем нагреве, нежели водород, и потому загорается, если масса протозвезды превышает 0,055−0,065 солнечной. Однако лития в космосе в 2500 раз меньше, чем дейтерия, и поэтому с энергетической точки зрения его вклад совершенно ничтожен.
Что у них внутри.
Что же происходит в недрах протозвезды, если гравитационный коллапс не завершился термоядерным поджогом водорода, а электроны объединились вединую квантовую систему, так называемый вырожденный ферми-газ? Доля электронов в этом состоянии увеличивается постепенно, а не подскакивает за единый миг от нуля до 100%. Однако для простоты будем считать, что этот процесс уже завершен.
Принцип Паули утверждает, что два электрона, входящие в одну и ту же систему, не могут пребывать в одинаковом квантовом состоянии. В ферми-газе состояние электрона определяется его импульсом, положением и спином, который принимает всего два значения. Это означает, что в одном и том же месте может находиться не более пары электронов с одинаковыми импульсами (и, естественно, противоположными спинами). А поскольку в ходе гравитационного коллапса электроны пакуются во все уменьшающийся объем, они занимают состояния с возрастающими импульсами и, соответственно, энергиями. Значит, по мере сжатия протозвезды растет внутренняя энергия электронного газа. Эта энергия определяется чисто квантовыми эффектами и не связана с тепловым движением, поэтому в первом приближении не зависит от температуры (в отличие от энергии классического идеального газа, законы которого изучают в школьном курсе физики). Более того, при достаточно высокой степени сжатия энергия ферми-газа многократно превосходит тепловую энергию хаотического движения электронов и атомных ядер. 
Увеличение энергии электронного газа повышает и его давление, которое также не зависит от температуры и растет куда сильнее давления теплового. Именно оно противостоит тяготению вещества протозвезды и прекращает ее гравитационный коллапс. Если это произошло до достижения температуры поджога водорода, коричневый карлик остывает сразу же после непродолжительного по космическим масштабам выгорания дейтерия. Если прото-звезда пребывает в пограничной зоне и имеет массу 0,07−0,075 солнечной, она еще миллиарды лет сжигает водород, но на ее финал это не влияет. В конце концов квантовое давление вырожденного электронного газа столь снижает температуру звездного ядра, что горение водорода останавливается. И хотя его запасов хватило бы на десятки миллиардов лет, поджечь их коричневый карлик уже больше не сможет. Этим-то он и отличается от самого легкого красного карлика, выключающего ядерную топку, лишь когда весь водород превратился в гелий.
Профессор Барроуз отмечает и еще одно различие звезды и коричневого карлика. Обычная звезда не только не остывает, теряя лучистую энергию, но, как это ни парадоксально, нагревается. Это происходит потому, что звезда сжимает и разогревает свое ядро, а это сильно увеличивает темпы термоядерного горения (так, за время существования нашего Солнца его светимость возросла по крайней мере на четверть). Иное дело коричневый карлик, сжатию которого препятствует квантовое давление электронного газа. Вследствие излучения с поверхности он остывает, подобно камню или куску металла, хотя и состоит из горячей плазмы, как нормальная звезда. 
Долгие поиски.
Погоня за коричневыми карликами затянулась надолго. Даже у наиболее массивных представителей этого семейства, которые в юности испускают пурпурное свечение, температура поверхности обычно не превышает 2000 К, а у тех, что полегче и постарше, порой не достигает даже 1000 К. В излучении этих объектов присутствует и оптическая компонента, хоть и очень слабенькая. Поэтому для их поиска лучше всего подходит инфракрасная аппаратура высокого разрешения, которая появилась только в 1980-х годах. Тогда же начали запускать инфракрасные космические телескопы, без которых почти невозможно обнаружить холодные коричневые карлики (пик их излучения приходится на волны длиной 3−5 микрометров, которые в основном задерживаются земной атмосферой). 
Именно в эти годы появились сообщения о возможных кандидатах. Поначалу такие заявления не выдерживали проверки, и реальное открытие первой из предсказанных Шивом Кумаром псевдозвезд состоялось лишь в 1995 году. Пальма первенства здесь принадлежит группе астрономов, возглавляемой профессором Калифорнийского университета в Беркли Гибором Басри. Исследователи изучали чрезвычайно тусклый объект PPl 15 в удаленном примерно на 400 световых лет звездном скоплении Плеяды, который ранее обнаружила группа гарвардского астронома Джона Стауффера. По предварительным данным, масса этого небесного тела составляла 0,06 массы Солнца, и он вполне мог оказаться коричневым карликом. Однако эта оценка была весьма приблизительной, и на нее нельзя было полагаться. Профессор Басри и его коллеги смогли решить эту задачу с помощью литиевой пробы, которую незадолго до того придумал испанский астрофизик Рафаэль Реболо.
«Наша группа работала на первом 10-метровом телескопе гавайской обсерватории имени Кека, который вступил в действие в 1993 году, — вспоминает профессор Басри. — Мы решили воспользоваться литиевой пробой, поскольку она давала возможность различить коричневые карлики и близкие к ним по массе красные карлики. Красные карлики очень быстро сжигают литий-7, а почти все коричневые карлики к этому не способны. Тогда считали, что возраст Плеяд составляет около 70 млн лет, и даже легчайшие красные карлики за это время должны были полностью избавиться от лития. Если бы мы нашли литий вспектре PPl 15, то имели бы все основания утверждать, что имеем дело с коричневым карликом. Задача оказалась непростой. Первый спектрографический тест вноябре 1994 года действительно выявил литий, а вот второй, контрольный, в марте 1995-го, этого не подтвердил. Естественно, мы пребывали в разочаровании — открытие ускользало прямо из рук. Однако первоначальное заключение было правильным. PPl 15 оказался парой коричневых карликов, обращающихся вокруг общего центра масс всего за шесть суток. Поэтому-то спектральные линии лития то сливались, то расходились — вот мы и не увидели их в ходе второго теста. Попутно мы обнаружили, что Плеяды старше, нежели считалось ранее». 
В этом же 1995 году появились сообщения об открытии еще двух коричневых карликов. Рафаэль Реболо и его коллеги по Астрофизическому институту Канарских островов обнаружили в Плеядах карлик Teide 1, который был также идентифицирован с помощью литиевого метода. А в самом конце 1995 года исследователи из Калифорнийского Технологического института и университета Джонса Хопкинса сообщили, что красный карлик Gliese 229, который находится всего в 19 световых годах от Солнечной системы, обладает компаньоном. Этот спутник в 20 раз тяжелее Юпитера, и в его спектре имеются линии метана. Молекулы метана разрушаются, если температура превышает 1500К, в то время как атмосферная температура наиболее холодных нормальных звезд всегда больше 1700К. Это позволило признать Gliese 229-B коричневым карликом, даже не используя литиевый тест. Сейчас уже известно, что его поверхность нагрета всего до 950 К, так что этот карлик очень даже холодный.
L-карлики, E-карлики — что дальше?
В настоящее время коричневых карликов известно вдвое больше, чем экзопланет, — примерно 1000 против 500. Исследование этих тел заставило ученых расширить классификацию звезд и звездоподобных объектов, поскольку прежняя оказалась недостаточной. 
Астрономы издавна подразделяют звезды на группы в соответствии со спектральными характеристиками излучения, которые, в свою очередь, прежде всего определяются температурой атмосферы. Сейчас в основном применяется система, основы которой более ста лет назад были заложены сотрудниками обсерватории Гарвардского университета. В ее простейшей версии звезды делятся на семь классов, обозначаемых латинскими буквами O, B, A, F, G, K и M. В класс O входят чрезвычайно массивные голубые звезды с температурой поверхности выше 33 000К, в то время как к классу M относят красные карлики, красные гиганты и даже ряд красных сверхгигантов, атмосфера которых нагрета менее чем до 3700 К. Каждый класс в свою очередь делится на десять подклассов — от самого горячего нулевого до самого холодного девятого. К примеру, наше Солнце принадлежит классу G2. У гарвардской системы есть и более сложные варианты (так, в последнее время белые карлики выделяют в особый класс D), но это уже тонкости.
Открытие коричневых карликов обернулось введением новых спектральных классов L и T. К классу L относят объекты с температурами поверхности от 1300 до 2000К. Среди них не только коричневые карлики, но и наиболее тусклые красные карлики, которые раньше относили к M-классу. Класс Т включает лишь одни коричневые карлики, атмосферы которых нагреты от 700 до 1300 K. В их спектрах в изобилии присутствуют линии метана, поэтому эти тела нередко называют метановыми карликами (именно таков Gliese 229 B). 
«К концу 1990-х годов мы накопили немало информации о спектрах самых тусклых звезд, в том числе и коричневых карликов, — рассказывает «ПМ» астроном из Калтеха Дэви Киркпатрик, входящий в группу ученых, по инициативе которых были введены новые классы. — Оказалось, что они обладают рядом особенностей, не встречавшихся ранее. Типичные для красных М-карликов спектральные метки оксидов ванадия и титана исчезли, зато появились линии щелочных металлов — натрия, калия, рубидия и цезия. Поэтому мы решили, что гарвардскую классификацию надо расширить. Сначала был добавлен класс L, эту букву предложил именно я — просто потому, что за ней ничего еще не числилось. Однако Gliese 229 B из-за наличия метана классу L не соответствовал. Пришлось задействовать еще одну свободную букву — T, так появился T-класс». 
Скорее всего, дело этим не закончится. Уже предложено ввести класс y, который резервируется для гипотетических ультрахолодных коричневых карликов, нагретых ниже 600к. Их спектры также должны иметь характерные особенности, такие как четкие линии поглощения аммиака (а при температурах менее 400 к появятся и пары воды). 

_______________________________________________________________________________________________

Таинственный джет квазара 4C+19.44.

Квазары представляют собой галактики, в центрах которых лежат активные черные дыры. В результате падения материи на черную дыру выделяется настолько большое количество энергии, что ядро квазара становится ярче всей остальной галактики. Большая часть излучения, испускаемого квазарами, формируется в радиодиапазоне. Это излучение вызывается электронами, вытолкнутыми со стороны ядра и движущимися со скоростями, близкими к скорости света, часто в границах узких, биполярных джетов, протянувшихся на сотни тысяч световых лет. Эти стремительно движущиеся заряженные частицы рассеивают фотоны света, увеличивая их энергию и превращая в рентгеновское излучение. Однако даже после двух десятилетий изучения квазаров ученые сегодня не могут с уверенностью сказать, какой именно физический механизм отвечает за рентгеновское излучение квазаров. В более мощных квазарах, похоже, доминирует механизм рассеяния. Для менее мощных джетов, однако, характеристики излучения указывают на то, что рентгеновское излучение связано с эффектами магнитного поля. 
В новом исследовании группа астрономов из Гарвард-Смитсоновского астрофизического центра, США, вместе с международными коллегами подробно изучила джет квазара 4C+19.44 длиной три сотни тысяч световых лет при помощи обсерваторий, работающих в различных диапазонах длин волн: рентгеновском (космическая обсерватория Chandra («Чандра»), инфракрасном (космическая обсерватория Spitzer («Спитцер»), оптическом (космическая обсерватория Hubble («Хаббл»), а также в радиодиапазоне (наземная обсерватория Very Large Array). Анализ результатов этих наблюдений позволил авторам работы прийти к выводу, что интенсивность магнитного поля и скорости частиц остаются примерно постоянными вдоль джета, по крайней мере, если принять, что излучение происходит в основном по механизму рассеяния. Однако ученые не исключают и возможность участия в суммарном процессе формирования рентгеновского излучения квазара механизма, включающего магнитные воздействия на заряженные частицы джета. Авторы заключают, однако, что для активации «магнитного» механизма все электроны, участвующие в нем, должны принадлежать к отдельной популяции, отличной от популяции электронов, принимающих участие в механизме рассеяния. Источник: astronews.ru

__________________________________________________________________________________________________

Мимас — герой в системе Сатурна.

Ученые раскрыли секреты значимости луны Мимас в системе газового гиганта Сатурн. 
Ученые давно пытаются раскрыть загадку колец Сатурна, в частности того, как они держатся вокруг газового гиганта Сатурна, а также, как они связаны между собой.
Ученые уже давно знают, что самое большое и самое яркое кольцо Сатурна, а именно кольцо B, контролируется гравитационными толчками крупного естественного спутника Мимас. 
Если бы кольцо не контролировалось гравитацией Мимаса, то его ледяные твердые частички просто вываливались бы из него, причем, как на внешних, как и на внутренних краях. Без участия гравитации луны Мимас, кольцо B, в конечном счете, расширилось и рассеялось бы. Однако присутствие естественного спутника урезает внешний край кольца B и как бы задвигает своенравные частицы обратно внутрь кольца, хотя те так и норовят покинуть его в хаотичном движении. 
Мимас был открыт в 1789 году Вильямом Гершелем. Его диаметр равен 400 километрам, что делает его двадцатым по размеру спутником в Солнечной системе. Источник: infuture.ru

Комментарии запрещены.

Мой электронный адрес

Если кто хочет со мной связаться, или есть какие то предложение, информации. Об пожеланиях, ошибках и.т.д.. Пишите, вот моя электронная почта:
alavka907@gmail.com

Свежие записи
Апрель 2018
Пн Вт Ср Чт Пт Сб Вс
« Мар    
 1
2345678
9101112131415
16171819202122
23242526272829
30  
Архивы

Апрель 2018
Пн Вт Ср Чт Пт Сб Вс
« Мар    
 1
2345678
9101112131415
16171819202122
23242526272829
30