PostHeaderIcon 1.Черная дыра может оказаться фабрикой нейтрино.2.Астрономы нашли самую яркую сверхновую.3.Советские космические достижении.4.Сколько лет Вселенной?5.Ученые выяснили.

Черная дыра может оказаться фабрикой нейтрино.

Гигантская черная дыра в центре Млечного Пути может являться источником таинственных частиц, именуемых нейтрино. В случае подтверждения, это будет говорить о том, что ученым впервые удалось отследить путь нейтрино до черной дыры.
Указывающие на это свидетельства были получены от трех спутников NASA, которые проводят наблюдения в рентген-диапазоне: рентгеновская орбитальная обсерватория Чандра, орбитальная обсерватория Swift и космическая обсерватория NuSTAR.
Нейтрино от Солнца постоянно бомбардируют Землю. Однако нейтрино, приходящие из-за пределов Солнечной системы могут быть в миллионы и миллиарды раз энергичнее. В течение долгого времени ученые ищут источник сверхвысокой энергии и нейтрино очень высоких энергий.
«Выяснение того, откуда приходят нейтрино высоких энергий, является одной их важнейших проблем астрофизики на сегодняшний день», – отметил Янг Бай, соавтор исследования, результаты которого были опубликованы в журнале Physical Review D. «Теперь у нас есть первые доказательства, что сверхмассивная черная дыра в Млечном Пути может быть источником этих очень энергичных нейтрино».
Так как нейтрино очень легко проходят через вещество, то крайне сложно построить детекторы, которые могли бы показать, откуда эти нейтрино пришли. Нейтринная обсерватория IceCube, находящаяся на южном полюсе, зафиксировала 36 высокоэнергичных нейтрино, начиная с 2010 года, когда комплекс был запущен.
Совмещая возможности IceCube с данными, полученными от рентген-телескопов, ученые смогли наблюдать за интенсивными событиями в космосе, которые соответствуют прибытию высокоэнергичных нейтрино на Землю.
«Мы проверили, что произошло после того, как Чандра стала свидетелем наиболее мощного выброса когда-либо наблюдаемого на Стрельце А*, сверхмассивной черной дыре Млечного Пути», – рассказала соавтор Андреа Петерсон. «И менее чем через три часа IceCube зафиксировал нейтрино».
Помимо этого, несколько обнаружений нейтрино произошло в течение нескольких дней вспышек от сверхмассивной черной дыры, которые наблюдались обсерваториями Swift и NuSTAR.
«Это бы значило многое, если мы обнаружим, что Стрелец А* генерирует нейтрино», – сказала Эми Барджер, соавтор работы.
Ученые полагают, что самые высокоэнергичные нейтрино образуются в самых массивных событиях во Вселенной, таких как слияние галактик, падение материи на сверхмассивные черные дыры и ветра вокруг пульсаров.
Одна из идей заключается в том, что это могло случиться, когда частицы вокруг черной дыры ускоряются взрывной волной, словно звуковым ударом, что приводит к появлению заряженных частиц, которые распадаются до нейтрино.
_____________________________________________________________________________________________

Астрономы нашли самую яркую сверхновую за всю историю наблюдений.

Когда массивные звезды умирают, они не уходят во мрак. Вместо этого они высвобождают большую часть своей массы и энергии вместе с мощным взрывом, оставляя после себя огромные светящиеся облака газа и остатки ядра погибшей звезды. Такие объекты принято называть сверхновыми. В июне 2015 года на южном полушарии ночного неба астрономы обнаружили сверхновую, которая могла образоваться из сверхредкого типа звезд и получила благодаря этому очень впечатляющие свойства.
Сверхновая, получившая название ASASSN-15lh, по наблюдениям астрономов, в 20 раз ярче всех вместе взятых (более 100 миллиардов) звезд в нашей галактике Млечный путь, что делает ее самой яркой сверхновой в истории наблюдения за такими объектами. Она в два раза превышает максимум яркости, зафиксированный для такого типа звезд.
Гибнущая звезда, как правило, высвобождает колоссальный объем энергии. Однако исследователи уверены в том, что этой энергии недостаточно для образования столь яркого объекта, как ASASSN-15lh. Группа астрономов под руководством Субо Дон из китайского Института астрономии и астрофизики имени Кавли считает, что необычно яркая сверхновая могла образоваться из очень редкого типа звезд, называемых магнетарами.
Когда звезда гибнет, ее масса обрушивается на ядро. Большая часть его уничтожается в результате взрыва секундой позже, однако то, что остается, по-прежнему обладает очень плотной массой нейтронов и называется нейтронной звездой. Иногда эти нейтронные звезды обладают более сильным, чем обычно, магнитным полем, примерно в 10 триллионов раз сильнее магнитного поля Земли. Эти объекты ученые называют магнетарами.
Астрономы и раньше находили магнетары. Например, в центре Млечного пути находится сразу несколько таких объектов. Однако все они непохожи на объект ASASSN-15lh. Большинство магнетаров обладают низкой скоростью вращения и, как правило, выполняют от одного до десяти оборотов в секунду. Однако Дон и его коллеги считают, что магнетар в центре сверхновой ASASSN-15lh совершает тысячу оборотов в секунду. А это, между прочим, предел скорости вращения магнетаров согласно теоретической физике.
Изменение в ложных цветах изображений галактики перед взрывом ASASSN-15lh, снятое камерой Dark Energy Camera (слева), и после рождения сверхновой, снятое глобальной сетью телескопов обсерватории Las Cumbres (справа)
Энергия этого вращения является источником силы сверхновой.
«Со временем звезда все сильнее и сильнее замедляет свое вращение вследствие потери ее энергии вращения. В конце концов эта потеря энергии знаменуется потоком заряженного ветра, который ударяется о сверхновую и делает ее еще ярче», — говорит Тодд Томпсон, соавтор исследования из Университета штата Огайо (США).
Для образования такой яркой сверхновой, какой является ASASSN-15lh, требуется, чтобы почти вся энергия магнетара была преобразована в свет. Такое явление с технической точки зрения возможно, но происходит чрезвычайно редко и фактически находится на границе наших знаний о том, как в целом ведут себя магнетары.
«Нужна вся энергия очень быстро вращающегося магнетара, чтобы образовать такого рода сверхновую, которую мы можем наблюдать в этом случае», — говорит соавтор исследования Крис Станек из Университета штата Огайо (США).
Команда ученых отмечает, что такое необычно редкое стечение обстоятельств находится на грани того, что физики вообще в настоящий момент знают о магнетарах. Однако именно такой сценарий является наиболее вероятным объяснением беспрецедентной яркости ASASSN-15lh.
Звезда, из которой образовалась сверхновая ASASSN-15lh, должна была быть очень массивной, синей, горячей звездой с очень высокой скоростью вращения. Вероятнее всего, она потеряла свои внешние слои гелия и водорода вскоре после своей гибели, так как эти элементы не удалось обнаружить уже у сверхновой. Благодаря различным телескопам по всему миру ученые провели спектральный анализ, чтобы выяснить, какие химические элементы могут содержаться в оставшемся от звезды облаке газа.
Астрономы пока не уверены, однако имеется предположение, что ранее звезда, из которой впоследствии появилась сверхновая, относилась к классу массивных звезд Вольфа — Райе.
«Есть звезды, в которых нет водорода или гелия. Многие из этих звезд обладают очень высокой скоростью вращения. Такие звезды называют звездами Вольфа — Райе. Я бы не исключал возможность, что ранее эта сверхновая как раз являлась одной из таких звезд. Потому что такие звезды действительно есть, а найденная нами сверхновая подходит под это описание. Она редкая, не имеет гелия и водорода, она массивная и обладает очень высокой скоростью вращения», — отмечает Станек.
Сверхновая ASASSN-15lh находится приблизительно в 3,8-4 миллиардах световых лет. Другими словами, сейчас мы видим призрачный свет от взрыва звезды, произошедшего многие миллиарды лет назад, когда наша планета все еще проходила процесс охлаждения. Свет от нее достиг Земли только в июне 2015 года и был впервые обнаружен парой телескопов в Чили, являющихся частью глобальной сети телескопов All-Sky Automated Survey for SuperNovae, или сокращенно ASAS-SN.
Звезда ASASSN-15lh является одной из 180 сверхновых, которые были обнаружены сетью ASAS-SN в 2015 году, и одной из 270 обнаруженных звезд с момента запуска этой программы наблюдения, начавшейся около двух лет назад.
«Это поистине удивительное открытие. Люди ведут наблюдение и изучение сверхновых многие десятилетия. Нашему же проекту всего два года. Однако в течение этих двух лет мы обнаружили объект, открытию которого позавидовали многие ученые, занимающиеся вопросом сверхновых», — делится Станек.
Изучение самой яркой из когда-либо обнаруженных сверхновой быстро переросло в совместное международное сотрудничество. К проекту подключились обсерватории в Чили, Южной Африке и даже телескоп Swift аэрокосмического агентства NASA направил свой взор на один из ярчайших источников света во Вселенной. Все хотят получить более качественные снимки и более подробный спектральный анализ обнаруженного объекта. В феврале 2016 года космический телескоп «Хаббл» сделает снимки сверхновой ASASSN-15lh, чтобы помочь команде исследователей определить, насколько близко она находится к центру своей галактики. Если окажется, что сверхновая находится в ядре галактики, то астрономам потребуется найти другое объяснение яркости ASASSN-15lh, которое не противоречит определению взаимодействия света звезды со сверхмассивной черной дырой, которая находится в центре этой галактики. Станек отмечает, что это маловероятный сценарий, однако исключать его не следует.
Астрономы часто называют сверхновые кратковременными событиями. Они взрываются, озаряя все вокруг, но затем медленно начинают угасать.
«Важнее всего будет получить спектральный анализ звезды при ее угасании. При угасании звезда остывает и становится больше, при этом теряя свою яркость», — говорит Томпсон.
«Так как звезда становится холоднее и, соответственно, теряет свою яркость, то обнаруживать такие звезды становится все сложнее и сложнее, однако одновременно это событие позволяет и лучше разглядеть то, что находится внутри таких звезд».
Это дает астрономам возможность изучить внутренние слои сверхновых, а не только их внешние границы.
«Обычно доступ к этой информации весьма ограничен, так как добраться до середины очень сложно. Поэтому мы стараемся не упускать таких возможностей», — объясняет Станек.
Станек и Томпсон надеются, что это открытие в целом подтолкнет теоретических физиков к пересмотру нынешних моделей формирования магнетаров и поиску альтернативных вариантов объяснения столь необычной яркости ASASSN-15lh.
«Очень интересно наблюдать за реакцией теоретиков, когда подобные экстремальные события сталкиваются с общепринятыми теориями и моделями. Они буквально заставляют искать более современные объяснения и модели и двигают теоретическую физику к новым границам», — отмечают ученые.
________________________________________________________________________________________________

Советские космические достижении, о которых привыкли молчать.

СССР вошел в историю как сверхдержава, первой запустившая спутник, живое существо и человека в космос. Тем не менее в период бурной космической гонки СССР стремился — и получалось — отодвинуть на задний план США в космосе везде, где это было возможно. Хотя Советский Союз первым заработал множество ключевых достижений, он также испытал и первую трагедию в космосе с участием людей.
Первый облет Луны.
Запущенный 2 января 1959 года космический аппарат «Луна-1» первым успешно достиг окрестностей Луны. 360-килограммовый аппарат вез различные металлические эмблемы, включая советский герб, и должен был врезаться в Луну, продемонстрировав превосходство советской науки. Тем не менее космический аппарат промазал мимо Луны, пролетев в 6000 километрах от лунной поверхности. Выпустив след натриевого газа, зонд стал временно таким же заметным, как звезда шестой величины, позволив астрономам отследить его прогресс.
«Луна-1» был минимум пятой попыткой СССР разбить аппарат о Луну, и прежние неудачные попытки были так засекречены, что даже американская разведка не знала о многих из них.
По сравнению с современными космическими зондами, «Луна-1» был чрезвычайно примитивным: без собственной двигательной системы, с батареями, обеспечивающими ограниченный электрический ток, и без камеры. Передачи от зонда прекратились спустя три дня после запуска.
Первый облет другой планеты.
Запущенный 12 февраля 1961 года советский зонд «Венера-1» отправился в миссию умышленного столкновения с Венерой. Будучи второй советской попыткой отправить зонд к Венере, «Венера-1» тоже вез советские медальоны в спускаемой капсуле. Хотя остальная часть зонда должна была сгореть при входе в атмосферу Венеры, СССР надеялся, что спускаемая капсула упадет на Венеру и ознаменует первую успешную попытку доставить объект на поверхность другой планеты.
Запуск и настройка связи с зондом прошли успешно, три сеанса связи с зондом свидетельствовали о нормальной работе. Но четвертый показал сбой в работе одной из систем зонда, и связь была отложена на пять дней. Контакт был окончательно потерян, когда зонд был в 2 миллионах километрах от Земли. Космический аппарат дрейфовал через космос, пролетев мимо Венеры на расстоянии 100 000 километров, и не смог получить данные для коррекции курса.
Первый аппарат, заснявший темную сторону Луны.
Запущенный 4 октября 1959 года зонд «Луна-3» стал первым космическим аппаратом, успешно запущенным на Луну. В отличие от двух предыдущих зондов «Луна», «Луна-3» был оснащен камерой, чтобы сделать снимки дальней стороны Луны, первые на то время.
Камера была примитивной и сложной. Космический аппарат смог сделать 40 фотографий, которые нужно было изготовить, поправить и высушить на космическом аппарате. Затем бортовая электронно-лучевая трубка должна была отсканировать снимки и отправить данные на Луну. Радиопередатчик был настолько слабым, что первые попытки передать снимки провалились. Только когда зонд подошел ближе к Земле, очертив круг вокруг Луны, были получены 17 некачественных фотографий, на которых хоть что-нибудь можно было разобрать.
В любом случае ученые были в восторге и от того, что нашли на снимках. В отличие от ближайшей к нам стороны Луны, которая плоская, дальняя сторона имела горы и даже несколько темных регионов.
Первая успешная высадка на другой планете.
17 августа 1970 года Венера-7, один из множества копий советский аппаратов, отправился к Венере. Зонд должен был высадить посадочный модуль, который передаст данные после того, как коснется поверхности Венеры, и осуществить тем самым первое успешное приземление на другой планете. Чтобы выжить в атмосфере Венеры максимально долгое количество времени, аппарат был охлажден до -8 градусов по Цельсию. СССР также хотел максимизировать количество времени, которое аппарат будет оставаться холодным. Поэтому модуль спроектировали так, чтобы он оставался прикрепленным к корпусу космического аппарата во время вхождения в атмосферу Венеры, пока атмосферная болтанка не форсирует отделение.
«Венера-7» вошел в атмосферу, как и было запланировано. Однако парашют, предназначенный для замедления аппарата, разорвался и не сработал, что привело к 29-минутному падению модуля на землю. Считалось, что модуль вышел из строя до столкновения с землей, но поздний анализ записанных радиосигналов показал, что зонд возвращал показания температуры с поверхности в течение 23 минут после посадки. Инженеры, которые строили космический аппарат, должны гордиться им.
Первые искусственные объекты на поверхности Марса.
«Марс-2» и «Марс-3», аппараты-близнецы, запущенные почти одновременно в мае 1971 года, были разработаны для выхода на орбиту Марса и картографирования поверхности. Оба космических аппарата переносили посадочные модули. СССР надеялся, что эти модули станут первыми искусственными объектами на поверхности Марса.
Тем не менее американцы немного обошли Советский Союз и первыми достигли орбиты Марса. Mariner 9, который тоже был запущен в мае 1971 года, пришел на две недели раньше советских зондов и стал первым космическим аппаратом на орбите другой планеты. По прибытии советские и американский зонды обнаружили, что Марс накрыла пыльная буря, которая помешала сбору данных.
В то время как посадочный модуль «Марс-2» разбился, «Марс-3» успешно приземлился и начал передачу данных. Но передача данных остановилась спустя 20 секунд, и на единственном полученном фото нельзя было разобрать детали и оно было с плохим светом. Во многом это произошло из-за массивной пыльной бури на Марсе, а так бы СССР сделал первые четкие снимки марсианской поверхности.
Первая роботизированная миссия по возвращению образцов.
У NASA были астронавты «Аполлона», которые собрали лунные камешки и привезли на Землю. У Советского Союза не было космонавтов на поверхности Луны, которые могли проделать то же самое, поэтому они постарались обойти американцев, первыми отправив автоматизированный зонд для сбора и возвращения лунной почвы. Первый советский такой зонд, «Луна-15», разбился о Луну. Следующие пять крушений произошли на Земле из-за ужасных проблем с ракетой-носителем. И все же «Луна-16», шестой советский зонд в серии, был успешно запущен после миссий «Аполлона-11» и «Аполлона-12».
Приземлившись в море Изобилия, советский зонд развернул дрель для сбора лунного грунта и помещения его в ступень для взлета, которая потом стартовала и вернула почву на Землю. Открыв запечатанный контейнер, советские ученые нашли всего 101 грамм лунного грунта — далеко не 22 килограмма, привезенные с «Аполлоном-11». В любом случае образцы были интенсивно проанализированы и показали, что обладают когезивными качествами влажного песка.
Первый космический аппарат, взявший на борт трех человек.
Запущенный 12 октября 1964 года, «Восход-1» стал первым космическим аппаратом, который вывел больше одного человека в космос. Хотя «Восход» был провозглашен Советским Союзом как новый космический аппарат, он был по большей части немного модифицированной версией того же аппарата, который вывел Юрия Гагарина в космос. Тем не менее американцам это показалось крутым, поскольку они не выводили в космос даже двух человек одновременно на тот момент.
Советские конструкторы считали «Восход» небезопасным. И продолжали настаивать против его использования, пока правительство не подкупило их предложением отправить одного из конструкторов в качестве космонавта с миссией. Вопросов безопасности аппарата это, конечно, не решило.
Во-первых, космонавты не могли осуществить аварийное катапультирование в случае отказа ракеты, поскольку не представлялось возможным построить люк для каждого космонавта. Во-вторых, космонавты умещались так тесно в капсуле, что не могли надеть скафандры. Если бы кабина разгерметизировалась, это означало бы верную смерть для всех. Новая система посадки, состоящая из двух парашютов и ретро-ракеты, испытывалась всего однажды до настоящей миссии. Наконец, космонавтам приходилось сидеть на диете перед миссией, чтобы общий вес космонавтов и капсулы был достаточно низким, чтобы его могла вывести одна ракета.
Несмотря на все эти существенные трудности, миссия прошла на удивление безупречно.
Первый человек африканского происхождения в космосе.
18 сентября 1980 года на космическую станцию «Салют-6» отправился «Союз-38». Он нес советского космонавта и Арнальдо Тамайо Мендеса, кубинского летчика, который стал первым человеком африканского происхождения, отправленным в космос. Его отбор стал частью советской программы «Интеркосмос», позволявшей другим странам принимать участие в советских космических миссиях.
Мендес оставался на борту «Салюта-6» всего неделю, но провел больше 24 экспериментов из области химии и биологии. Он наблюдал за своим метаболизмом, паттерном электрической активности мозга и за тем, как кости ног меняют форму в космосе. По возвращении на Землю, Мендес был удостоен звание Героя Советского Союза.
Поскольку Мендес не был афроамериканцем, он не стал и первым негром в космосе. Эта честь принадлежит Гайону Стюарту Блафорду-младшему, который отправился в космос с шаттлом «Челленджер» в 1983 году.
Первая стыковка с объектом «мертвого космоса».
11 февраля 1985 года советская космическая станция «Салют-7» замолчала. Каскад электрических замыканий пронесся вихрем по станции, выбив ее электрические системы и оставив «Салют-7» мертвой и замерзшей.
В попытке спасти станцию, Советский Союз отправил двух ветеранов космонавтики для ремонта «Салюта-7». Автоматизированная система стыковки не работала, поэтому космонавтам нужно было подойти достаточно близко, чтобы осуществить ручную стыковку. К счастью, станция не вращалась, и космонавты смогли пристыковаться, впервые продемонстрировав возможность стыковки с любым объектом в космосе, даже с мертвым и неконтактным.
Экипаж сообщил, что внутри станции было затихло, на стенах выросли сосульки, а внутренняя температура составлял -10 градусов по Цельсию. Работы по восстановлению космической станции проходили в течение нескольких дней, экипажу пришлось проверить сотни кабелей, чтобы определить источник неисправности в электрической цепи.
_____________________________________________________________________________________________

Сколько лет Вселенной?

Мудрецы Вавилона и Греции считали мироздание вечным и неизменным, а индуистские хронисты в 150 году до н.э. определили, что ему в точности 1 972 949 091 год (кстати, по порядку величины они не сильно ошиблись!). В 1642 году английский теолог Джон Лайтфут путем скрупулезного анализа библейских текстов вычислил, что сотворение мира пришлось на 3929 год до н.э.; спустя несколько лет ирландский епископ Джеймс Ашер передвинул его на 4004 год. Основатели современной науки Иоганн Кеплер и Исаак Ньютон тоже не прошли мимо этой темы. Хотя они апеллировали не только к Библии, но и к астрономии, их результаты оказались похожими на вычисления богословов — 3993 и 3988 годы до н.э. В наше просвещенное время возраст Вселенной определяют иными способами. Чтобы увидеть их в исторической проекции, поначалу взглянем на собственную планету и ее космическое окружение.
Гадание по камням.
Со второй половины XVIII века ученые начали оценивать возраст Земли и Солнца на основе физических моделей. Так, в 1787 году французский натуралист Жорж-Луи Леклерк пришел к выводу, что, если бы наша планета при рождении была шаром из расплавленного железа, ей нужно было бы от 75 до 168 тысяч лет, чтобы остыть до нынешней температуры. Через 108 лет ирландский математик и инженер Джон Перри заново просчитал тепловую историю Земли и определил ее возраст в 2−3 млрд лет. В самом начале XX столетия лорд Кельвин пришел к выводу, что если Солнце постепенно сжимается и светит исключительно за счет высвобождения гравитационной энергии, то его возраст (и, следовательно, максимальный возраст Земли и остальных планет) может составить несколько сотен миллионов лет. Но в то время геологи не смогли ни подтвердить, ни опровергнуть эти оценки из-за отсутствия надежных методов геохронологии. 
В середине первого десятилетия ХХ века Эрнест Резерфорд и американский химик Бертрам Болтвуд разработали основы радиометрической датировки земных пород, которая показала, что Перри был много ближе к истине. В 1920-х были найдены образцы минералов, чей радиометрический возраст приближался к 2 млрд лет. Позднее геологи не раз повышали эту величину, и к настоящему времени она выросла более чем вдвое — до 4,4 млрд. Дополнительные данные предоставляет исследование «небесных камней» — метеоритов. Почти все радиометрические оценки их возраста укладываются в интервал 4,4−4,6 млрд лет. 
Современная гелиосейсмология позволяет непосредственно определить и возраст Солнца, который, по последним данным, составляет 4,56 — 4,58 млрд лет. Поскольку продолжительность гравитационной конденсации протосолнечного облака исчислялась всего лишь миллионами лет, можно уверенно утверждать, что от начала этого процесса до наших дней прошло не более 4,6 млрд лет. При этом солнечное вещество содержит множество элементов тяжелее гелия, которые образовались в термоядерных топках массивных звезд прежних поколений, выгоревших и взорвавшихся сверхновыми. Это означает, что протяженность существования Вселенной сильно превышает возраст Солнечной системы. Чтобы определить меру этого превышения, нужно выйти сначала в нашу Галактику, а затем и за ее пределы. 
Следуя за белыми карликами.
Время жизни нашей Галактики можно определять разными способами, но мы ограничимся двумя самыми надежными. Первый метод основан на мониторинге свечения белых карликов. Эти компактные (примерно с Землю величиной) и изначально очень горячие небесные тела представляют собой конечную стадию жизни практически всех звезд за исключением самых массивных. Для превращения в белый карлик звезда должна полностью сжечь все свое термоядерное топливо и претерпеть несколько катаклизмов — например, на какое-то время стать красным гигантом.
Типичный белый карлик почти полностью состоит из ионов углерода и кислорода, погруженных в вырожденный электронный газ, и имеет тонкую атмосферу, в составе которой доминируют водород или гелий. Его поверхностная температура составляет от 8 000 до 40 000 К, в то время как центральная зона нагрета до миллионов и даже десятков миллионов градусов. Согласно теоретическим моделям, могут также рождаться карлики, состоящие преимущественно из кислорода, неона и магния (в которые при определенных условиях превращаются звезды с массой от 8 до 10,5 или даже до 12 солнечных масс), однако их существование еще не доказано. Теория также утверждает, что звезды, как минимум вдвое уступающие Солнцу по массе, заканчивают жизнь в виде гелиевых белых карликов. Такие звезды очень многочисленны, однако они сжигают водород крайне медленно и посему живут многие десятки и сотни миллионов лет. Пока что им просто не хватило времени, чтоб исчерпать водородное горючее (очень немногочисленные гелиевые карлики, обнаруженные к настоящему времени, обитают в двойных системах и возникли совсем другим путем). 
Коль скоро белый карлик не может поддерживать реакции термоядерного синтеза, он светит за счет накопленной энергии и потому медленно остывает. Темпы этого охлаждения можно вычислить и на этой основе определить время, потребное для снижения температуры поверхности от первоначальной (для типичного карлика это примерно 150 000 К) до наблюдаемой. Поскольку нас интересует возраст Галактики, следует искать самые долгоживущие, а потому и самые холодные белые карлики. Современные телескопы позволяют обнаружить внутригалактические карлики с температурой поверхности менее 4000 К, светимость которых в 30 000 раз уступает солнечной. Пока они не найдены — либо их нет вообще, либо очень мало. Отсюда следует, что наша Галактика не может быть старше 15 млрд лет, иначе они бы присутствовали в заметных количествах.
Это верхняя граница возраста. А что можно сказать о нижней? Самые холодные из ныне известных белых карликов были зарегистрированы космическим телескопом «Хаббл» в 2002 и 2007 годах. Вычисления показали, что их возраст составляет 11,5 — 12 млрд лет. К этому еще нужно добавить возраст звезд-предшественниц (от полумиллиарда до миллиарда лет). Отсюда следует, что Млечный Путь никак не моложе 13 млрд лет. Так что окончательная оценка его возраста, полученная на основе наблюдения белых карликов, — примерно 13 — 15 млрд лет. 
Шаровые свидетельства.
Второй метод основан на исследовании шарообразных звездных скоплений, находящихся в периферийной зоне Млечного Пути и обращающихся вокруг его ядра. Они содержат от сотен тысяч до более чем миллиона звезд, связанных взаимным притяжением. 
Шаровые скопления имеются практически во всех крупных галактиках, причем их количество порой достигает многих тысяч. Новые звезды там практически не рождаются, зато пожилые светила присутствуют в избытке. В нашей Галактике зарегистрировано около 160 таких шаровых скоплений, и, возможно, будут открыты еще два-три десятка. Механизмы их формирования не вполне ясны, однако, вероятнее всего, многие из них возникли вскоре после рождения самой Галактики. Поэтому датировка формирования древнейших шаровых скоплений позволяет установить и нижнюю границу галактического возраста.
Такая датировка весьма сложна технически, но в основе ее лежит очень простая идея. Все звезды скопления (от сверхмассивных до самых легких) образуются из одного итого же газового облака и потому рождаются практически одновременно. С течением времени они выжигают основные запасы водорода — одни раньше, другие позже. На этой стадии звезда покидает главную последовательность и претерпевает серию превращений, которые завершаются либо полным гравитационным коллапсом (за которым следует формирование нейтронной звезды или черной дыры), либо возникновением белого карлика. Поэтому изучение состава шарового скопления позволяет достаточно точно определить его возраст. Для надежной статистики число изученных скоплений должно составить не менее нескольких десятков.
Такую работу три года назад выполнила команда астрономов, пользовавшихся камерой ACS (Advanvced Camera for Survey) космического телескопа «Хаббл». Мониторинг 41 шарового скопления нашей Галактики показал, что их средний возраст составляет 12,8 млрд лет. Рекордсменами оказались скопления NGC 6937 и NGC 6752, удаленные от Солнца на 7200 и 13 000 световых лет. Они почти наверняка не моложе 13 млрд лет, причем наиболее вероятное время жизни второго скопления -13,4 млрд лет (правда, с погрешностью плюс-минус миллиард).
Однако же наша Галактика должна быть постарше своих скоплений. Ее первые сверхмассивные звезды взрывались сверхновыми и выбрасывали в космос ядра многих элементов, в частности, ядра стабильного изотопа бериллия-бериллия-9. Когда начали формироваться шаровые скопления, их новорожденные звезды уже содержали бериллий, причем тем больше, чем позже они возникли. По содержанию бериллия в их атмосферах можно выяснить, насколько скопления моложе Галактики. Как свидетельствуют данные по скоплению NGC 6937, эта разница составляет 200 — 300 млн лет. Так что без большой натяжки можно сказать, что возраст Млечного Пути превышает 13 млрд лет и возможно, достигает 13,3 — 13,4 млрд. Это практически такая же оценка, как и сделанная на основании наблюдения белых карликов, но получена она совершенно иным способом. 
Закон Хаббла.
Научная постановка вопроса о возрасте Вселенной стала возможной лишь в начале второй четверти прошлого века. В конце 1920-х годов Эдвин Хаббл и его ассистент Милтон Хьюмасон занялись уточнением расстояний до десятков туманностей за пределами Млечного Пути, которые лишь несколькими годами ранее стали считать самостоятельными галактиками. 
Эти галактики удаляются от Солнца с радиальными скоростями, которые были измерены по величине красного смещения их спектров. Хотя дистанции до большинства таких галактик удалось определить с большой погрешностью, Хаббл все же выяснил, что они примерно пропорциональны радиальным скоростям, о чем и написал в статье, опубликованной в начале 1929 года. Два года спустя Хаббл и Хьюмасон подтвердили этот вывод на основании результатов наблюдений других галактик — некоторые из них отдалены более чем на 100 млн световых лет. 
Эти данные легли в основу прославленной формулы v=H0d, известной как закон Хаббла. Здесь v — радиальная скорость галактики по отношению к Земле, d — расстояние, H0 — коэффициент пропорциональности, чья размерность, как легко видеть, обратна размерности времени (раньше его называли постоянной Хаббла, что неверно, поскольку в предшествующие эпохи величина H0 была иной, чем в наше время). Сам Хаббл и еще многие астрономы долгое время отказывались от предположений о физическом смысле этого параметра. Однако Жорж Леметр еще в 1927 году показал, что общая теория относительности позволяет интерпретировать разлет галактик как свидетельство расширения Вселенной. Четырьмя годами позже он имел смелость довести этот вывод до логического конца, выдвинув гипотезу, что Вселенная возникла из практически точечного зародыша, который он, за неимением лучшего термина, назвал атомом. Этот первородный атом мог пребывать в статичном состоянии любое время вплоть до бесконечности, однако его «взрыв» породил расширяющееся пространство, заполненное материей и излучением, которое за конечное время дало начало нынешней Вселенной. Уже в своей первой статье Леметр вывел полный аналог хаббловской формулы и, располагая известными к тому времени данными о скоростях и дистанциях ряда галактик, получил примерно такое же значение коэффициента пропорциональности между дистанциями и скоростями, что и Хаббл. Однако его статья была напечатана на французском языке в малоизвестном бельгийском журнале и поначалу осталась незамеченной. Большинству астрономов она стала известна лишь в 1931 году после публикации ее английского перевода.
Хаббловское время.
Из этой работы Леметра и более поздних трудов как самого Хаббла, так и других космологов прямо следовало, что возраст Вселенной (естественно, отсчитанный от начального момента ее расширения) зависит от величины 1/H0, которую теперь называют хаббловским временем. Характер этой зависимости определяется конкретной моделью мироздания. Если считать, что мы живем в плоской Вселенной, заполненной гравитирующим веществом и излучением, то для вычисления ее возраста 1/H0 надо умножить на 2/3. 
Тут-то и возникла загвоздка. Из измерений Хаббла и Хьюмасона вытекало, что численная величина 1/H0 приблизительно равна 1,8 млрд лет. Отсюда следовало, что Вселенная родилась 1,2 млрд лет назад, что явно противоречило даже сильно заниженным в то время оценкам возраста Земли. Из этого затруднения можно было выпутаться, предположив, что галактики разлетаются медленнее, чем считал Хаббл. Со временем это допущение подтвердилось, но проблемы так и не решило. Согласно данным, полученным к концу прошлого века с помощью оптической астрономии, 1/H0 составляет от 13 до 15 млрд лет. Так что расхождение все же оставалось, поскольку пространство Вселенной как считалось, так и считается плоским, а две трети хаббловского времени сильно меньше даже самых скромных оценок возраста Галактики.
В общем виде это противоречие было устранено в 1998 — 1999 годах, когда две команды астрономов доказали, что последние 5 — 6 млрд лет космическое пространство расширяется не с падающей, а возрастающей скоростью. Это ускорение обычно объясняют тем, что в нашей Вселенной растет влияние антигравитационного фактора, так называемой темной энергии, плотность которой не изменяется со временем. Поскольку плотность гравитирующей материи падает по мере расширения Космоса, темная энергия все успешней конкурирует с тяготением. Продолжительность существования Вселенной с антигравитационной компонентой вовсе не обязана быть равной двум третям хаббловского времени. Поэтому открытие ускоряющегося расширения Вселенной (отмеченное в 2011 году Нобелевской премией) позволило устранить расстыковку между космологическими и астрономическими оценками времени ее жизни. Оно также стало прелюдией к разработке нового метода датировки ее рождения. 
Космические ритмы.
30 июня 2001 года NASA отправило в космос зонд Explorer 80, через два года переименованный в WMAP, Wilkinson Microwave Anisotropy Probe. Его аппаратура позволила регистрировать температурные флуктуации микроволнового реликтового излучения с угловым разрешением менее трех десятых градуса. Тогда уже было известно, что спектр этого излучения почти полностью совпадает со спектром идеального черного тела, нагретого до 2,725 К, а колебания его температуры при «крупнозернистых» измерениях с угловым разрешением в 10 градусов не превышают 0,000036 К. Однако на «мелкозернистой» шкале зонда WMAP амплитуды таких флуктуаций были в шесть раз больше (около 0,0002 К). Реликтовое излучение оказалось пятнистым, тесно испещренным чуть более и чуть менее нагретыми участками.
Флуктуации реликтового излучения порождены колебаниями плотности электронно-фотонного газа, который некогда заполнял космическое пространство. Она упала почти до нуля приблизительно через 380 000 лет после Большого взрыва, когда практически все свободные электроны соединились с ядрами водорода, гелия и лития и тем самым положили начало нейтральным атомам. Пока этого не произошло, в электронно-фотонном газе распространялись звуковые волны, на которые влияли гравитационные поля частиц темной материи. Эти волны, или, как говорят астрофизики, акустические осцилляции, наложили отпечаток на спектр реликтового излучения. Этот спектр можно расшифровать при помощи теоретического аппарата космологии и магнитной гидродинамики, что дает возможность по‑новому оценить возраст Вселенной. Как показывают новейшие вычисления, его наиболее вероятная протяженность составляет 13,72 млрд лет. Она и считается сейчас стандартной оценкой времени жизни Вселенной. Если принять во внимание все возможные неточности, допуски и приближения, можно заключить, что, согласно результатам зонда WMAP, Вселенная существует от 13,5 до 14 млрд лет. 
Таким образом, астрономы, оценивая возраст Вселенной тремя различными способами, получили вполне совместимые результаты. Поэтому теперь мы знаем (или, выражаясь осторожней, думаем, что знаем), когда возникло наше мироздание — во всяком случае, с точностью до нескольких сотен миллионов лет. Вероятно, потомки внесут решение этой вековой загадки в перечень самых замечательных достижений астрономии и астрофизики. 
Статья «Возраст мироздания» опубликована в журнале «Популярная механика» (№5).
_______________________________________________________________________________________________

Ученые выяснили, почему формирование звезд в центрах галактик затруднено.

Одной из важных нерешенных проблем современной космологической модели, объясняющей строение и происхождение Вселенной, модели «Большого взрыва», является то, что она предсказывает слишком высокую скорость формирования звезд в галактиках. Весь звездообразовательный материал в галактиках должен был коалесцировать в звезды в то время, когда возраст нашей Вселенной составлял лишь небольшую часть от ее текущего возраста (составляющего 13,8 миллиарда лет). Однако более половины из числа галактик, которые мы видим, в основном спиральные галактики, продолжают активно формировать звезды и в настоящее время. Это расхождение между теоретическими прогнозами и наблюдениями заставило ученых обратить более пристальное внимание на процессы, затрудняющие звездообразование в галактиках. Без привлечения представления об этих процессах модель Большого взрыва не может объяснить устройство современной Вселенной. 
Негативное влияние на звездообразование в галактиках могут оказывать сверхновые и активные ядра галактик, излучение которых «разрывает» конденсирующиеся молекулярные облака и не дает звездам формироваться, считают авторы ряда недавних научных исследований. Другой механизм подавления звездообразования в галактиках предложен в новой работе, проведенной научной группой под руководством Фатемех Табатабаи из Канарского института астрофизики, Канарские острова, Испания. 
Табатабаи и ее коллеги в своей работе подробно исследовали влияние различных факторов на звездообразование в окрестностях центра галактики NGC 1097 и показали, что основной вклад в подавление звездообразования вносят магнитные поля и космические лучи. Решающее влияние на звездообразование оказывает магнитное поле, которое замедляет процессы формирования звезд, оказывая на молекулярное облако давление изнутри, не дающее облаку коллапсировать под действием гравитации. В своем анализе исследователи опирались на данные, полученные в оптическом и ближнем ИК диапазонах при помощи космического телескопа НАСА Hubble («Хаббл») и радиотелескопов Very Large Array и Submillimeter Array. Источник: astronews.ru

Комментарии запрещены.

Мой электронный адрес

Если кто хочет со мной связаться, или есть какие то предложение, информации. Об пожеланиях, ошибках и.т.д.. Пишите, вот моя электронная почта:
alavka907@gmail.com

Свежие записи
Июль 2018
Пн Вт Ср Чт Пт Сб Вс
« Июн    
 1
2345678
9101112131415
16171819202122
23242526272829
3031  
Архивы

Июль 2018
Пн Вт Ср Чт Пт Сб Вс
« Июн    
 1
2345678
9101112131415
16171819202122
23242526272829
3031