PostHeaderIcon 1.Болезни будут выявлять, просто просканировав сетчатку.2.Глупо ли мечтать о терраформировании Марса?3.Почему раны гноятся.4.ИИ помог найти природные аналоги…5.Гравитон.6.Типы галактик.

Болезни будут выявлять, просто просканировав сетчатку.

Периодическая диагностика и профилактические осмотры помогают выявить массу заболеваний на ранней стадии, но некоторые состояния могут быть диагностированы лишь тогда, когда болезнь уже достаточно затянулась. Кроме того, многие жизнеугрожающие патологии не могут быть обнаружены в отдаленных регионах из-за отсутствия квалифицированных специалистов. Но недавно сотрудники Медицинского университета Вены представили доступный сканер сетчатки глаза, который может стать хорошим инструментом ранней диагностики ряда заболеваний, в том числе и сахарного диабета. 
Как пишет издание Science Daily, для своей разработки исследователи использовали данные, которые можно «считать» с сетчатки глаза любого человека, а информации она может дать немало. При разработке сканера использовалась технология оптической когерентной томографии (ОКТ), которая в течение 1,2 секунды производит до 40 000 снимков. Полученные данные анализируются алгоритмами на основе искусственного интеллекта, а после система выдает заключение. 
Как удалось выяснить, такой метод диагностики без помощи врача-офтальмолога дает возможность выявить наличие у пациента диабета или же вычислить риск его появления, кроме того, можно получить данные о биологическом возрасте, склонности и стаже курения и еще ряде параметров. В ближайшем будущем ученые хотят усовершенствовать алгоритм с целью диагностики возрастных дегенеративных нарушений, неврологических проблем, заболеваний почек, сердца и сосудов, печени, а также патологии других внутренних органов. Источник: hi-news.ru

_______________________________________________________________________________________________

Глупо ли мечтать о терраформировании Марса? 

Во всей Вселенной есть только одна планета, способная пригреть сложную, разумную жизнь, и это Земля. Хотя далекие миры возле других звезд могут, в принципе, быть похожими на Землю и даже населенными, мы этого пока не знаем наверняка. И до сих пор мы и близко не нашли ничего, подобного нашей родной планете. Но что, если поискать ее в нашей же Солнечной системе? Самый вероятный кандидат — это, конечно, Марс. В прошлом, считают ученые, Красная планета имела много «земных» качеств. Можно ли вернуть их? Сможет ли Марс однажды снова стать обитаемым? На этот вопрос ответит Итан Зигель. 
Пока что люди пытаются освоить Марс. Это достаточно трудно — почва токсична, атмосфера отсутствует, бактерии не выживают. Но если планету терраформировать. Тогда самой большой проблемой останется отсутствие на Марсе магнитного поля, удерживающего атмосферу на нашей родной планете. Мы имеем право быть сколь угодно пессимистичными, глядя на наши современные технологии, но превращение Марса в обитаемый мир может быть вполне возможно. Однажды. 
Конечно, почва самого Марса может быть токсичной, но и на Земле тоже есть много токсичной почвы. Есть несколько критериев, определяющих гостеприимность среды: кислотность почвы, содержание влаги и способность удерживать элементы, молекулы и питательные вещества, которые необходимы, при этом не отравляя все сущее. Почву можно обработать или восстановить при помощи простых химических манипуляций на Земле, и нет никаких оснований сомневаться, что мы могли бы проделать нечто похожее на Марсе. Пожалуй, это самая простая часть. Как только у нас появятся микроорганизмы, хотя бы небольшая часть тех, что мы имеем на Земле, которые смогут развиваться в марсианской почве, мы выйдем на путь создания подходящей среды обитания. 
Есть у Марса и более глубокая проблема: он сухой. Не то чтобы на нем не было водяного пара или льда, определенно есть. Проблема в том, как перевести большое количество воды в жидкую фазу, постепенно. Хотя на Марсе присутствуют потоки жидкой и соленой воды в определенное время суток, подавляющее большинство времени они либо замерзшие, либо испарившиеся в газообразное состояние. Жидкая вода, насколько нам известно, имеет важное значение для жизненных процессов на Земле, и на Марсе ее нет. 
Физическая причина проста: атмосфера Марса слишком тонкая, чтобы поддерживать жидкую воду на поверхности. Жидкая вода требует определенного атмосферного давления: около 1% от того, что мы имеем на Земле, как минимум. Марс имеет лишь 0,7% атмосферного давления Земли, поэтому жидкая фаза по большей части невозможна. Отчасти это обусловлено соленостью поверхности, отчасти тем, что кратеры уходят глубоко вниз, гораздо ниже, чем атмосфера и давление позволяют существовать жидкой воде. На самом деле, если бы люди были беззащитными на поверхности Марса, жидкость в их телах вскипела бы, поскольку условия на Марсе ниже предела Армстронга. 
Если вы хотели бы восстановить почву, создать стабильную микроскопическую жизнь, обитаемую биосферу, океаны и другие формы водоемов на поверхности, вам нужно было бы добавить больше атмосферы. Чтобы получить атмосферу, сопоставимую с земной, вам понадобилось бы добавить примерно в 140 раз больше атмосферы, чем присутствует на Марсе сегодня: около 3500 тератонн, или 3,5 х 10^18 кг. Это примерно с массу астероида Астрея 5 или внутреннего большого спутника Урана Пака и представляет около 70% земной атмосферы. Пришлось бы перевезти кучу атмосферы — преимущественно азот и кислород — чтобы попасть туда. 
Но есть одна проблема, даже если добавить атмосферу: у Марса нет магнитного поля, которое защитило бы ее от солнечного ветра. Марс по-прежнему теряет свою атмосферу и по сей день, благодаря заряженным частицам, сталкивающимся с атмосферой, и выбивающими различные молекулы. Атмосфера Марса сегодня представлена по большей части двуокисью углерода, которая тяжелее азота и кислорода. Если бы мы хотели терраформировать Марс, мы должны были бы не только добавить больше атмосферы, воды и химически обработать поверхность, но и защитить эту дополнительную атмосферу. 
Может быть, все не так плохо. Видите ли, когда дело доходит до физических задач, очень важно все рассчитать: спросить не только что произойдет, но и с какой скоростью. Солнечный ветер, без сомнения, уносит атмосферу Марса прочь, но на вопрос о том, как быстро истощается атмосфера планеты, ответила миссия MAVEN: примерно в 150 граммов в секунду. Конечно, во время солнечных бурь скорость растет в десять раз. Но если взять и посчитать, сколько времени уйдет на то, чтобы сдуть созданную при помощи терраформирования атмосферу, ответ будет: сотни миллионов лет, и это как минимум. Вместо того чтобы создавать сверхсильное магнитное поле, можно было бы просто добавлять частиц в атмосферу, компенсируя потери. 
Конечно, ни в коем случае не следует рассматривать отказ от Земли в пользу Марса; любое терраформирование, которое будет происходить с Марсом, так или иначе будет интенсивнее, чем наши попытки сохранить Землю. Как бы сильно мы ни загрязнили свою родную планету, она пока еще остается самым населенным миром в Солнечной системе. 
Если вы считаете, что нужно рассматривать Марс как место, в которое мы отправимся, когда сделаем Землю негостеприимной, то это неправильно. Земля — это планета номер один, и с ней нужно решать проблемы в первую очередь. Марс может стать нашим домом в далеком будущем, но про Землю тоже забывать нельзя. Источник: hi-news.ru

______________________________________________________________________________________________

Почему раны гноятся: история антисептиков.

Что вы делаете, если поцарапаетесь? Мажете царапину йодом или зеленкой, закрываете ее бактерицидным пластырем. Зачем? Странный вопрос: чтобы в рану не попали микробы и она не нагноилась. 
История антисептики (буквально — «противогниения»), то есть системы мероприятий, направленных на обеззараживание раны. 
Вена, начало XIX века. В университетском госпитале есть две акушерские клиники. Первая пользуется дурной славой — там роженицы «мрут как мухи», погибает до трети молодых матерей. Во второй смертность в среднем ниже. Почему — никто не знает. Этот факт заинтересовал принятого в 1846 году на работу в первую клинику доктора Игнаца Филиппа Земмельвайса. Он начал сравнивать показатели смертности обеих больниц, постепенно отбрасывая факторы, которые на нее не влияли. Загруженность оказалась одинаковой, микроклимат в помещениях одинаковый… Доктор изучил даже религиозные взгляды пациенток. Единственная зацепка нашлась в медицинском контингенте. Первая клиника была базой для обучения студентов-медиков. А во второй с 1841 года обучались только акушерки. И именно с этого времени женщины там стали умирать в 2−3 раза реже, чем в первой.
Наиболее распространенные антисептиков.
«Зеленка». Водно-спиртовой раствор анилинового красителя под названием «бриллиантовый зеленый». В 40 тысяч раз сильнее «карболки». 
Йод. 5%-ный спиртовой раствор используется для обработки краев ран. Всё чаще применяют в виде соединений с высокомолекулярными веществами. 
Перекись водорода. 3%-ный водный раствор пероксида водорода активно используется в хирургии для промывания ран. 
Хлоргексидин. В медицине применяется в виде спиртового или водного раствора биглюконата различных концентраций — от 0,5 до 20%. 
Активный хлор. Образуется в водных растворах хлорной извести, хлорамина, ДТС ГК и т. п. В основном применяется для дезинфекции помещений в лечебно-профилактических учреждений.
В 1847 году внезапно скончался друг Земмельвайса профессор судебной медицины Якоб Колетчка, случайно поранивший палец во время вскрытия очередного трупа. Доктор тяжело переживал потерю, но этот случай натолкнул его на мысль — а что, если роженицы гибнут по той же самой причине? Ведь основная разница между студентами-медиками и обучающимися акушерками состояла лишь в том, что первые вскрывали трупы, а вторые работали исключительно с роженицами. Земмельвайс провел эксперимент: взял секрет из маток болевших родильной горячкой женщин и ввел его кроликам. Кролики все до единого заболели и умерли, что только укрепило исследователя в предположении: причиной эпидемии родильной горячки и гибели сотен молодых женщин были сами врачи. Они переносили «трупные яды» из анатомического театра в родильные палаты и операционные, заражая и тем самым убивая рожениц. 
Экспериментируя с различными веществами, Земмельвайс обнаружил, что раствор хлорной извести лучше всего устраняет запах гниения. А значит, именно хлорка может помочь устранить тот самый «заразный агент», который находится в трупах. Он с трудом получил разрешение на апробацию своего метода во второй акушерской клинике. Результаты превзошли самые смелые ожидания. В апреле 1847 года смертность составляла 18,3%. В мае была введена обязательная обработка рук перед манипуляциями с роженицами. В июне показатель снизился до 2,2%, в июле — до 1,2%. Почти десятикратное снижение! По итогам 1847 года среднегодовая смертность во второй клинике оказалась в пять раз ниже, чем в первой. Казалось бы, передовой опыт необходимо немедленно изучать и внедрять. Не тут-то было. 
Мятежный венгр.
Когда Земмельвайс попытался пропагандировать новый метод среди коллег, его подняли на смех и объявили шарлатаном. Во‑первых, травить холеные руки хирурга хлоркой — нонсенс, кожа трескается и грубеет. Во‑вторых, родильная горячка возникает сама по себе. В-третьих, сомневаться в чистоте рук докторов и обвинять их в убийстве собственных пациентов — это вызов всему врачебному сообществу. Началась самая натуральная травля врача-новатора. В марте 1849 года Земмельвайса изгнали из Венского университета, его методика была забыта, смертность в обеих клиниках вернулась к прежним показателям, «смута» была устранена, «честь мундира» спасена.
Убийца микробов. 
Как выяснилось позже, фенол (карболовая кислота) оказался чрезвычайно токсичным. Предельно допустимая концентрация его в воздухе — всего 5 мг/м3. В первую очередь поражается нервная система, дыхательный центр головного мозга — вплоть до его паралича. Распыленный в качестве аэрозоля, фенол обладает местнораздражающим действием — вызывает слезотечение, першение в горле и приступы сухого кашля, боль в носо- и ротоглотке. 
Современники считали, что сыграла свою роль и жестоко подавленная Габсбургами Венгерская революция (1848−1849). Руководитель клиники, где работал Земмвельвайс, был консервативным австрийцем и под благовидным предлогом мог просто избавиться от неблагонадежного венгра с непонятными, но определенно «революционными» идеями. 
Земмельвайс вернулся в родной Пешт. Здесь он продолжил пропаганду своего метода, снизив смертность в родильном отделении местной больницы до 0,8%. Это был абсолютный мировой рекорд для того времени. В 1855 году Земмельвайс стал профессором кафедры акушерства Пештского университета и продолжил страстно и настойчиво продвигать свой метод. Он писал открытые письма коллегам акушерам-гинекологам и известным врачам, опубликовал монографию, в которой обобщил весь свой опыт по родильной горячке. 
Ему помогали немногочисленные сторонники. Но в медицинских кругах труды «мятежного венгра» не принимали, гипотезу критиковали. 
Карболка против микробов.
Между тем хирурги во Франции, Германии, России всеми силами пытались остановить эпидемии, косившие послеоперационных больных. Выход из тупика искал и молодой английский врач Джозеф Листер, работавший в хирургическом блоке лазарета в Глазго. Этот блок был построен на месте бывшего холерного барака. Трупы были захоронены кое-как, близко к поверхности земли, и испарения от разлагающихся тел витали в палатах и операционных. В отделении не прекращались рожистые воспаления, свирепствовала гангрена, гнойные осложнения.
Хирурги видели прямую связь между этими двумя фактами и считали, что спасти ситуацию может только перенос клиники в менее «проклятое» место. Листер пытался найти причину. Он принялся изучать научную литературу, в том числе работы французского химика Луи Пастера. В них описывалось гниение и брожение, наглядно доказывалось, что оба эти процесса вызываются микроскопическими живыми организмами. Английский хирург счел доводы ученого француза убедительными и предположил, что эти организмы переносятся по воздуху вместе с пылью. Они живут и умирают, причем, как и любой другой живой организм, их можно убить. Идея о том, что микробы могут существовать строго в определенной среде, показалась Листеру наиболее интересной. 
Он даже переосмыслил ее на свой хирургический лад. Пока кожа цела, в организм не проникает воздух с пылью, а следовательно, и микробы. Но как только кожный покров нарушен, гноеродные микроорганизмы попадают в тело и начинают там размножаться. Это подтверждалось наблюдениями — закрытые переломы всегда заживали быстрее, чем открытые, и без гнойных осложнений.
Помня утверждение Пастера о том, что микробы плохо переносят различные химические соединения, Листер решил попробовать в качестве «оружия» фенол, открытый в 1834 году. Правда, тогда его называли карболовой кислотой и использовали для дезодорации сточных вод. Кислотой пропитывали трехслойную герметичную повязку, накладываемую на рану, ею мыли руки, инструменты, ее даже распыляли в операционной. Результаты оказались поразительными. Хирургический блок по‑прежнему стоял на месте холерного кладбища, но гнойные осложнения в нем прекратились. Совсем. 
Поднакопив материал и проанализировав его, Листер в 1867 году публикует статью «Об антисептическом принципе в хирургической практике». Она в точности повторила судьбу публикаций Земмельвайса — ее подняли на смех. Старая английская профессура приняла работу «40-летнего выскочки» за личное оскорбление: заливать гангрену карболкой? Распугивать неведомых зверюшек, которых ни один порядочный врач не видел ни в одной воспаленной ране?
Антисептика в России.
Серебро и йод. Нельзя не упомянуть выдающегося российского хирурга, начальника кафедры хирургии Медико-хирургической (впоследствии — Военно-медицинской) академии, основоположника военно-полевой хирургии Николая Ивановича Пирогова. Не обладая знаниями по микробиологии, но будучи прекрасным клиницистом, Николай Иванович сделал ряд наблюдений, касающихся заражения ран. 
«Если я оглянусь на кладбище, где схоронены зараженные в госпиталях, то не знаю, чему больше удивляться: стоицизму ли хирургов, занимающихся еще изобретением новых операций, или доверию, которым продолжают еще пользоваться госпитали у правительств и общества», — писал Пирогов. 
Пытаясь бороться с гангренами и послеоперационной смертностью, он применял для обработки ран азотнокислое серебро и настойку йода. У себя в петербургской клинике он выделил особые отделения для больных рожей и гангреной, чтобы предупредить распространение инфекции. По сути, его начинания были предвосхищением работ Джозефа Листера. 
Асептика и антисептика. В современной медицине антисептика ходит рука об руку с асептикой. Если первое — это борьба с микробами, уже попавшими в рану, то второе — это недопущение условий, при которых рана может быть загрязнена. Девиз асептики — даешь стерильность! Для того, чтобы возбудители гнойной инфекции не попали в тело человека, их попросту не должно быть в окружающем воздухе, на инструментах, на перевязочном материале, и даже на самом пациенте. Асептика появилась на 25 лет позже антисептики и показалась медицинскому сообществу настолько прогрессивной, что среди врачей началось движение за отказ от антисептики. Впрочем, как выяснилось позже, оба этих метода максимально эффективны только в сочетании друг с другом. С тех пор они работают на благо пациентов рука об руку. 
Победа антисептики.
Однако Листер, в отличие от Земмельвайса, обладал на редкость крепкими нервами. Он приглашал коллег в Глазго и предлагал убедиться во всем своими собственными глазами. А посмотреть было на что. Из 40 проведенных им ампутаций 34 закончились выздоровлением прооперированных. Другие хирурги о таких цифрах могли только мечтать. Уверенность Листера в своей правоте и неумолимая статистика сделали свое дело. Хирурги сдались и сначала потихоньку, тайком друг от друга, а потом и в открытую стали применять карболку. 
Листер не прекращал исследования. В 1874 году он написал письмо своему вдохновителю — Луи Пастеру, в котором поделился результатами своих наблюдений. Это подтолкнуло гениального француза на изучение гноя под микроскопом, результатом чего стало открытие стрептококков, основных гноеродных микробов. Пастер доказал, что основной источник заразы — руки хирургов и их инструментарий. Учитывая это, Листер скорректировал свой метод, отказавшись от распыления карболки и сосредоточившись на обработке рук, операционного поля, ланцетов, зажимов и повязок. Совместная работа хирургов и бактериологов приносила свои плоды, давала надежду сотням и тысячам раненых и больных, миллионам рожающих женщин во всем мире. В XX век человечество вошло с четким пониманием причин гнойных осложнений и с мощным оружием против них — антисептикой. Времена эпидемий родильной горячки безвозвратно канули в Лету. 
Автор статьи — врач, научный редактор медицинского журнала «ABC». Источник: popmech.ru
______________________________________________________________________________________________

ИИ помог найти природные аналоги лекарств против рака и старения.

Ученые британского Исследовательского фонда биогеронтологии, компаний Insilico Medicine и Life Extension при помощи методов глубокого обучения нашли натуральные миметики препаратов метформин и рапамицин, препятствующих старению и развитию рака. 
Согласно исследованиям, и метформин, лекарство против диабета 2-го типа, и иммунодепрессант рапамицин обладают значительным эффектом при лечении рака и старческих заболеваний, однако, оба они оказывают значительные побочные эффекты и продаются только по рецепту, что осложняет их использование в качестве препаратов, продлевающих жизнь. 
Обратившись к помощи нейронной сети, группа ученых проанализировала безопасность и генетическую схожесть свыше 800 натуральных веществ, которые могли бы повторить действие этих препаратов, но были бы лишены побочных эффектов.
В результате было выявлено множество новых кандидатов на миметики метформина и рапамицина, о которых ранее не было известно. В частности, близким миметиком метформина оказался аллантоин и гинсеносид, рапамицина — галлат эпигаллокатехина и изоликвиритигенин, и витаферин — для обоих препаратов. 
Важность этого исследования в том, что натуральные препараты не регулируются Управлением по санитарному контролю и другими ведомствами США и могут в будущем появиться на полках аптек в свободной продаже как пищевые добавки, замедляющие механизмы старения на молекулярном и клеточном уровне.
В начале осени американские врачи сообщили о готовности к клиническим испытаниям первого препарата, действие которого заключается в увеличении продолжительности жизни. Он воздействует на ген, который заставляет старые клетки умереть, причем делает это без вреда для соседних здоровых клеток. Источник: hightech.fm
_______________________________________________________________________________________________

Гравитон. 

Гравитон — гипотетическая безмассовая элементарная частица — переносчик гравитационного взаимодействия без электрического заряда. Должен обладать спином 2 и двумя возможными направлениями поляризации. 
Термин «гравитон» был предложен в 1930-х годах, часто приписывается работе 1934 года Д. И. Блохинцева и Ф. М. Гальперина. 
Гипотеза о существовании гравитонов появилась благодаря успеху квантовой теории поля (особенно Стандартной модели) в моделировании поведения остальных фундаментальных взаимодействий с помощью подобных частиц: фотоны в электромагнитном взаимодействии, глюоны в сильном взаимодействии, W± и Z-бозоны в слабом взаимодействии. Следуя этой аналогии, за гравитационное взаимодействие также может отвечать некая элементарная частица. 
Ряд физиков отвергает саму гипотезу о гравитоне как несостоятельную. Например, если гравитоны существуют, то они должны излучаться чёрными дырами, что, вероятно, противоречит Общей теории относительности. 
Возможно также, что гравитоны являются квазичастицами, удобными для описания слабых гравитационных полей в масштабах длины и времени, существенно больших планковской длины и планковского времени, но непригодными для описания сильных полей и процессов с характерными масштабами, близкими к планковским.
______________________________________________________________________________________________

Типы галактик.

• Спиральные галактики.
Примерно треть всех галактик в ближайшей к нам части Вселенной — спиральные. Центральное ядро из старых заезд окружено спиральными рукавами, в которых преобладают яркие молодые звезды. Эти галактики богаты газом и пылью, в них много областей звездооброзования. 
• Эллиптические галактики.
Это огромные сгустки, состоящие из красных и жёлтых старых звезд. Эллиптические галактики не содержат туманности, в которых рождаются новые звезды. 
• Линзообразные галактики.
Для этих галактик характерно больше шарообразное ядро из старых звёзд, окруженное диском, содержащим звезды и газ. Но в линзоабразных галактиках не развита система спиральных рукавов, в них нет молодых звёзд и пылевых туманностей, светящихся благодаря излучению ярких звёзд. 
• Неправильные галактики.
Эти галактики могут иметь самые разные очертания. Газ, пыль и голубые горячие звезды в них обычно перемешаны без порядка, но иногда можно увидеть признаки центральной перемычки. 
• Активные галактики.
Активными галактиками называются галактики, из центра которых исходит сильнейшее излучение. Принято считать, что ядрах активных галактик находится сверхмассивная чёрная дыра, которая поглощает запасы газа и пыли из галактического диска. При этом выделяются чудовищные количества энергии и возникают два мощных джета (струи), которые выстреливаются из чёрной дыры в противоположных направлениях. По современным представлениям, большинство галактик скрывают в центре чёрную дыру, но далеко не всегда она проявляет активность.

Комментарии запрещены.

Мой электронный адрес

Если кто хочет со мной связаться, или есть какие то предложение, информации. Об пожеланиях, ошибках и.т.д.. Пишите, вот моя электронная почта:
alavka907@gmail.com

Свежие записи
Октябрь 2018
Пн Вт Ср Чт Пт Сб Вс
« Сен    
1234567
891011121314
15161718192021
22232425262728
293031  
Архивы

Октябрь 2018
Пн Вт Ср Чт Пт Сб Вс
« Сен    
1234567
891011121314
15161718192021
22232425262728
293031