PostHeaderIcon 1.Способы уничтожения Солнечной системы.2.Гигантские галактики…3.Звезда снаружи и внутри.4.Ядерная реакция.5.Астрономы обнаружили…

Способы уничтожения Солнечной системы силами людей.

Мы, люди, с превеликим удовольствием и мастерством портим собственную планету. Но кто сказал, что мы не можем продолжить делать это в другом месте? 
Авария на ускорителе частиц.
Случайно выпустив экзотические формы материи на ускорителе частиц, мы рискуем уничтожить всю Солнечную систему.
До строительства Большого адронного коллайдера от CERN, некоторые ученые переживали, что столкновения частиц, созданные высокоэнергетическим ускорителем, могут породить такие гадости, как вакуумные пузыри, магнитные монополи, микроскопические черные дыры или страпельки (капельки странной материи — гипотетической формы материи, похожей на обычную, но состоящей из тяжелых странных кварков). Эти опасения были разбиты научным сообществом в пух и прах и стали не больше чем слухами, распространяемыми некомпетентными людьми, или попытками раздуть сенсацию на пустом месте. Кроме того, отчет 2011 года, опубликованный LHC Safety Assesment Group, показал, что столкновения частиц не представляют никакой опасности.
Андерс Сандберг, научный сотрудник Оксфордского университета, считает, что ускоритель частиц едва ли приведет к катастрофе, но отмечает, что если каким-либо образом появятся страпельки, «будет плохо»:
«Преобразование планеты, подобной Марсу, в странную материю выпустит часть массы покоя в виде радиации (и расплескивающихся страпелек). Если предположить, что преобразование займет час и выпустит 0,1% как радиацию, светимость составит 1.59*10^34 Вт, или в 42 миллиона больше светимости Солнца. Большая ее часть будет представлена тяжелыми гамма-лучами».
Упс. Очевидно, БАК не в состоянии произвести странную материю, но, возможно, какой-нибудь будущий эксперимент, на Земле или в космосе, сможет. Выдвигаются предположения, что странная материя существует под высоким давлением внутри нейтронных звезд. Если нам удастся создать такие условия искусственным путем, конец может настать довольно скоро.
Проект звездной инженерии пойдет не по плану.
Мы могли бы разрушить Солнечную систему, серьезно повредив или изменив Солнце в процессе выполнения проекта звездной инженерии или нарушив планетарную динамику в его процессе.
Некоторые футурологи предполагают, что будущие люди (или наши постчеловеческие потомки) могут решить выполнить любое число проектов по звездной инженерии, включая ведение звездного хозяйства. Дэвид Крисвелл из Университета Хьюстон описал звездное хозяйство как попытку контролировать эволюцию и свойства звезды, включая увеличение срока ее жизни, извлечение материалов или создание новых звезд. Чтобы замедлить горение звезды, тем самым увеличив срок ее жизни, звездные инженеры будущего могли бы избавить ее от лишней массы (большие звезды горят быстрее).
Но потенциал возможной катастрофы — запредельный. Как и планы по внедрению геоинженерных проектов здесь, на Земле, проекты звездной инженерии могут привести к огромному числу непредвиденных последствий или спровоцировать неконтролируемые каскадные эффекты. К примеру, попытки убрать массу Солнца могут привести к странным и опасным вспышкам или же к опасному для жизни снижению светимости. Также они могут оказать существенное влияние на планетарные орбиты.
Провальная попытка превратить Юпитер в звезду.
Некоторые считают, что было бы неплохо превратить Юпитер в своего рода искусственную звезду. Но в попытке сделать это, мы могли бы уничтожить сам Юпитер, а вместе с ним и жизнь на Земле.
В статье в Journal of the British Interplanetary Society астрофизик Мартин Фогг предположил, что мы превратим Юпитер в звезду в рамках первого шага по терраформированию галилеевых спутников. С этой целью будущие люди посеют в Юпитер крошечную первичную черную дыру. Черная дыра должна быть идеально разработана, чтобы не выйти за границы предела Эддингтона (точка равновесия между внешней силой излучения и внутренней силы гравитации). По мнению Фогга, это создаст «достаточно энергии для создания эффективных температур на Европе и Ганимеде, чтобы те стали похожи на Землю и Марс соответственно».
Шикарно, если только что-то пойдет не так. Как рассказал Сандберг, поначалу все будет хорошо — но черная дыра может вырасти и поглотить Юпитер во вспышке радиации, которая стерилизует всю Солнечную систему. Без жизни и с Юпитером в черной дыре, в наших окрестностях воцарится полнейшая неразбериха.
Нарушение орбитальной динамики планет.
Когда мы начнем возиться с расположением и массами планет и других небесных тел, мы рискуем нарушить хрупкий орбитальный баланс в Солнечной системе.
В действительности, орбитальная динамика нашей Солнечной системы чрезвычайно хрупкая. Было подсчитано, что даже малейшее возмущение может привести к хаотичным и даже потенциально опасным орбитальным движениям. Причина в том, что планеты находятся в резонансе, когда любые два периода находятся в простом численном соотношении (к примеру, Нептун и Плутон имеют орбитальный резонанс 3:1, поскольку Плутон завершает две полных орбиты на каждые три орбиты Нептуна).
В результате два вращающихся тела могут влиять друг на друга, даже если находятся слишком далеко. Частые близкие схождения могут привести к тому, что меньшие объекты будут дестабилизированы и сойдут со своих орбиты — и начнется цепная реакция по всей Солнечной системе.
Такие хаотичные резонансы, впрочем, могут произойти естественным путем, или же мы спровоцируем их, двигая Солнце и планеты. Как мы уже отметили, есть такой потенциал у звездной инженерии. Перспектива перемещения Марса в потенциально обитаемую зону, которая будет сопряжена с нарушением орбиты с помощью астероидов, может также нарушить орбитальный баланс. С другой стороны, если мы построим сферу Дайсона из материалов Меркурия и Венеры, орбитальная динамика может измениться совершенно непредсказуемым образом. Меркурий (или то, что от него останется) может быть выброшен из Солнечной системы, а Земля окажется в опасной близости к крупным объектам вроде Марса.
Плохой маневр варп-двигателя.
Космический корабль с варп-двигателем — это было бы круто, безусловно, но также невероятно опасно. Любой объект вроде планеты в точке назначения будет подвержен массивным расходам энергии.
Известный также как двигатель Алькубьерре, варп-двигатель однажды может заработать, генерируя пузыри отрицательной энергии вокруг себя. Расширяя пространство и время за кораблем и сжимая перед ним, такой двигатель может разогнать судно до скоростей, не ограниченных скоростью света.
К сожалению, у такого энергетического пузыря есть потенциал причинять серьезные повреждения. В 2012 году группа ученых решила рассчитать, какой ущерб может принести двигатель такого типа. Джейсон Мейджор с Universe Today объясняет:
«Пространство — не пустота между точкой А и точкой Б… нет, оно полно частиц, которые обладают массой (и которые не обладают). Ученые пришли к выводам, что эти частицы могут «прокатываться» по пузырю деформации и сосредотачиваться в регионах перед и за кораблем, а также в самом пузыре.
Когда корабль с двигателем Алькубьерре замедляется со сверхсветовой скорости, частицы, собранные пузырем, испускаются в виде энергетических всплесков. Всплеск может быть чрезвычайно энергичным — достаточно, чтобы уничтожить что-то в пункте назначения по курсу корабля.
«Любые люди в пункте назначения, — писали ученые, — канут в Лету вследствие взрыва гамма-лучей и высокоэнергетических частиц из-за чрезвычайного голубого смещения частиц переднего региона».
Ученые также добавляют, что даже при коротких поездках, будет испускаться столько энергии, что «вы полностью будете уничтожать все, что находится перед вами». И под этим «всем» вполне может быть целая планета. Кроме того, поскольку количество этой энергии будет зависеть от длины пути, потенциально у интенсивности этой энергии нет никакого предела. Прибывающий варп-корабль может принести значительно больше повреждений, чем просто разрушить планету.
Проблемы с искусственной червоточиной.
Использование червоточин для обхода ограничений межзвездных путешествий — это здорово в теории, но мы должны быть очень осторожны, разрывая пространственно-временной континуум.
Еще в 2005 году иранский физик-ядерщик Мухаммад Мансурьяр изложил схему создания проходимой червоточины. Произведя достаточное количество эффективной экзотической материи, мы могли бы теоретически пробить дыру в космологической ткани пространства-времени и создать короткий путь для космического аппарата.
Документ Мансурьяра не указывает на негативные последствия, но о них говорит Андерс Сандберг:
«Во-первых, горловины червоточины требуют массы-энергии (возможно, отрицательной) в масштабах черной дыры такого же размера. Во-вторых, создание петель времени может привести к тому, что виртуальные частицы станут реальными и разрушат червоточину в энергетическом каскаде. Вероятно, это плохо закончится для окружения. Кроме того, разместив один конец червоточины в Солнце, а другой где-то еще, вы можете переместить и его, или облучить всю Солнечную систему.
Разрушение Солнца плохо скажется на нас всех. А облучение, опять же, стерилизует всю нашу систему.
Навигационная ошибка двигателя Шкадова и катастрофа.
Если мы захотим переместить нашу Солнечную систему в далеком будущем, мы рискуем полностью ее уничтожить.
В 1987 году русский физик Леонид Шкадов предложил концепцию мегаструктуры, «двигатель Шкадова», которая буквально может отвезти нашу Солнечную систему вместе со всей ее начинкой к соседней звездной системе. В будущем это может позволить нам отказаться от старой умирающей звезды в пользу более молодой.
Двигатель Шкадова в теории очень прост: это просто колоссальное дугообразное зеркало с вогнутой стороной, обращенной к Солнцу. Строители должны разместить зеркало на произвольном расстоянии, где гравитационное притяжение Солнца будет уравновешиваться исходящим давлением его излучения. Зеркало, таким образом, станет стабильным статическим спутником в равновесии между буксиром тяжести и давлением солнечного света.
Солнечная радиация будет отражаться от внутренней изогнутой поверхности зеркала обратно к Солнцу, подталкивая нашу звезду ее же собственным светом — отраженная энергия будет производить крошечную тягу. Так устроен двигатель Шкадова, и человечество отправится покорять галактику вместе со звездой.
Что может пойти не так? Да все. Мы можем прогадать и рассеять Солнечную систему по космосу или вовсе столкнуться с другой звездой.
Отсюда рождается интересный вопрос: если мы разовьем способность перемещаться между звездами, мы должны понять, как управлять множеством небольших объектов, расположенных в дальних пределах Солнечной системы. Нам придется быть осторожными. Как говорит Сандберг, «дестабилизировав пояс Койпера или облако Оорта, мы получим множество комет, которые обрушатся на нас».
Возвращение мутировавших зондов фон Неймана.
Скажем, мы отправим флот экспоненциально самовоспроизводящихся зондов фон Неймана колонизировать нашу галактику. Если предположить, что они будут очень плохо запрограммированы или кто-то намеренно создаст эволюционирующие зонды, в случае длительной мутации они могут превратиться в нечто совершенно злобное и недоброжелательное по отношению к своим создателям.
В конце концов, наши умные кораблики вернутся, чтобы разорвать нашу Солнечную систему, высосать все ресурсы или «убить всех человеков», положив конец нашей интересной жизни.
Инцидент с межпланетной серой слизью.
Самовоспроизводящиеся космические зонды могут существовать также в значительно меньших размерах и быть опасными: экспоненциально воспроизводящиеся наноботы. Так называемая «серая слизь», когда неконтролируемый рой нанороботов или макроботов потребит все планетарные ресурсы, чтобы создать больше копий, не будет ограничиваться планетой Земля. Эта слизь может проскользнуть на борту покидающего гибнущую звездную систему корабля или вообще появиться в космосе как часть мегаструктурного проекта. Оказавшись в Солнечной системе, она может превратить все в кашу.
Буйство искусственного сверхинтеллекта.
Одной из опасностей создания искусственного сверхинтеллекта является потенциал не только уничтожить жизнь на Земле, но и распространиться в Солнечную систему — и за ее пределы.
Часто приводится в пример сценарий со скрепками, когда плохо запрограммированный ИСИ преобразует всю планету в скрепки. Вышедший из-под контроля ИСИ не обязательно будет делать скрепки — возможно, для достижения наилучшего эффекта потребуется также производство бесконечного числа компьютерных процессоров и превращения всей материи на земле в полезный компьютер. ИСИ даже может разработать мета-этический императив распространения своих действий по всей галактике.

_____________________________________________________________________________________________

 

Гигантские галактики являются наилучшим «домом» для обитаемых планет.

Галактики, подобные Млечному пути, могут быть не самыми лучшими «колыбелями жизни» в нашей Вселенной – в гигантских галактиках, бедных «новорожденными» звездами и по крайней мере в два раза более массивных, чем Млечный путь, может находиться в 10000 раз больше обитаемых планет, чем в нашей галактике, согласно новому исследованию.
В этой научной работе астрономы изучили более 140000 ближайших к нам галактик в попытке ответить на вопрос: какой тип галактики лучше всего подходит для обитаемых планет?
К своему удивлению, ученые пришли к выводу, что крупные спиральные галактики, подобные нашей родной галактике, не являются самыми подходящими для обитаемых планет галактиками Вселенной, как объяснил один из соавторов исследования Анупам Мазумдар, специалист по космологии частиц из Ланкастерского университета, Великобритания, в интервью интернет-изданию Space.com.
Ученые исследовали галактики, наблюдаемые при помощи обсерватории Апачи-Пойнт, США, являющейся частью Слоуновского цифрового обзора неба. В ходе исследования выяснилось, что наиболее подходящим для обитаемых планет типом галактики является богатая «металлами» (элементами тяжелее гелия) галактика, масса которой не менее чем в два раза превышает массу Млечного пути, а скорость звездообразования более чем в десять раз ниже таковой для нашей галактики
Всего из 140000 галактик, выступающих в роли объектов этого исследования, 200 галактик, наилучшим образом удовлетворявших выработанным критериям, были признаны исследователями как эталоны «обитаемых» галактик. Ближайшая к нам галактика этой группы, носящая название Маффей-1, находится на расстоянии 9,5 миллиона световых лет от Млечного пути.

_______________________________________________________________________________________________

Звезда снаружи и внутри.

Древние считали что звезды – нечто вечное и постоянные, хотя и наблюдали за некоторыми изменение их светимости. На сегодняшний день уже достоверно известно, что не все звезды одинаковы. Более того они тоже эволюционируют. Их жизнь можно сравнить с жизнью человека.
И всегда все начинается с рождения и заканчивается смертью. Но смерть звезды это нечто другое – после смерти она дает энергию и материал для рождения новых звезд. Так что еще раз можно убедиться в справедливости выражения: «Ничто не вечно…»
Чтобы лучше изучить строение ученым понадобилось очень много времени. Как говорилось в одной из статей: наша система находится в относительно спокойной части галактики. А ближайшей к нам звездой, за которой можно было так или иначе наблюдать, было Солнце. Но даже сейчас можно только с определенной точностью говорить о внутреннем строении звезд.
Для анализа развития звезды очень важно знать ее внутреннюю структуру. Фактически, зная состав можно предположить как будут со временем изменятся внешние параметры такого небесного тела. К внешним параметрам можно отнести, конечно же, размер, массу и светимость.
Давайте попробуем выяснить, какие же процессы протекают в глубинах звездной массы.
Теперь на помощь астрономам приходят химики и физики. Внутреннее строение – это химический состав, смесь газов, которые образуют ту или иную звезду. Но даже такой простой вопрос может вызвать множество вариантов ответов. Ведь мы можем наблюдать только внешние слои звезд, которые принято называть атмосферой. Внутреннее строение нам недоступно – ни увидеть, ни проникнуть в глубь звезды мы, увы, не можем. Прежде всего, нам препятствует температура, даже известные фантасты не предлагали человечеству такой материал, чтобы он мог выдержать столь значительный нагрев, а тем более защитить от него человека.
Приходится применять не прямые методы изучения: компьютерное моделирование, лабораторные условия, математические расчеты, физико-химическое моделирование. А знать нам нужно не так уж много – температуру, плотность, давление и химический состав звезды.
Как же поступают современные ученые? Это очень просто – применяются известные законы физики и механики для определения необходимых параметров по данным, полученным об атмосферах звезд. И ко всему, считается, что звезды состоят из таких же химических элементов, которые встречаются на Земле. И вот нам и пригодятся все знания в области химии для моделирования процессов, происходящих в недрах звезд. Лабораторные условия исследования, конечно, далеко не соответствуют реальным, но так можно узнать очень многое. Элементарные частицы одинаковы во всей вселенной – протоны, электроны и нейтроны – их свойства должны быть одинаковы, хотя не исключено, что могут встречаться и аномалии.
Наблюдения показывают, что большинство звёзд устойчивы, т. е. они заметно не расширяются и не сжимаются в течение длительных промежутков времени. Как устойчивое тело звезда может существовать только в том случае, если все действующие на её вещество внутренние силы уравновешиваются. Какие же это силы?
Звезда – раскалённый газовый шар, а основным свойством газа является стремление расшириться и занять любой предоставленный ему объём. Это стремление вызвано давлением газа и определяется его температурой и плотностью. В каждой точке внутри звезды действует сила давления газа, которая старается расширить звезду. Но в каждой же точке ей противодействует другая сила – сила тяжести вышележащих слоев, пытающаяся сжать звезду. Однако ни расширения, ни сжатия не происходит, звезда устойчива. Это означает, что обе силы уравновешивают друг друга. А так как с глубиной вес вышележащих слоёв увеличивается, то давление, а, следовательно, и температура возрастают к центру звезды.
Звезда излучает энергию, вырабатываемую в её недрах. Температура в звезде распределена так, что в любом слое в каждый момент времени энергия, получаемая от нижележащего слоя, равняется энергии, отдаваемой слою вышележащему. Сколько энергии образуется в центре звезды, столько же должно излучаться её поверхностью, иначе равновесие нарушится. Таким образом, к давлению газа добавляется ещё и давление излучения.
Лучи, испускаемые звездой, получают свою энергию в недрах, где располагается её источник, и продвигаются через всю толщу звезды наружу, оказывая давление на внешние слои. Если бы звёздное вещество было прозрачным, то продвижение это осуществлялось бы почти мгновенно, со скоростью света. Но оно непрозрачно и тормозит прохождение излучения. Световые лучи поглощаются атомами и вновь испускаются уже в других направлениях. Путь каждого луча сложен и напоминает запутанную зигзагообразную кривую. Иногда он «блуждает» многие тысячи лет, прежде чем выйдет на поверхность и покинет звезду.
Излучение, покидающее поверхность звезды, качественно (но не количественно) отличается от излучения, рождающегося в источнике звёздной энергии. По мере движения наружу длина волны света увеличивается. Поверхность Солнца, например, излучает в основном световые и инфракрасные лучи, а в его недрах возникает коротковолновое рентгеновское и гамма-излучение. Давление излучения для Солнца и подобных ему звёзд составляет лишь очень малую долю от давления газа, но для гигантских звёзд оно значительно.
Оценки температуры и плотности в недрах звёзд получают теоретическим путём, исходя из известной массы звезды и мощности её излучения, на основании газовых законов физики и закона всемирного тяготения. Определённые таким образом температуры в центральных областях звёзд составляют от 10 млн. градусов для звёзд легче Солнца до 30 млн. градусов для гигантских звёзд. Температура в центре Солнца — около 15 млн. градусов.
При таких температурах вещество в звёздных недрах почти полностью ионизовано. Атомы химических элементов теряют свои электронные оболочки. Вещество состоит только из атомных ядер и отдельных электронов. Поскольку поперечник атомного ядра в десятки тысяч раз меньше поперечника целого атома, то в объёме, вмещающем всего десяток целых атомов, могут свободно уместиться многие миллиарды атомных ядер и отдельных электронов. При этом расстояния между частицами вопреки высокой плотности будут всё ещё велики по сравнению с их размерами. Вот почему вещество, плотность которого в центре Солнца в 100 раз превышает плотность воды, – более плотное, чем любое твёрдое тело на Земля — тем не менее, обладает всеми свойствами идеального газа.
Температура внутри звезды тем ниже, чем больше концентрация частиц в газе, т. е. чем меньше его средняя молекулярная масса. Средняя молекулярная масса газа, состоящего из атомов водорода, равна 1, из атомов гелия – 4, натрия – 23, железа – 56. В ионизованном газе число частиц увеличивается за счёт электронов, а общая масса вещества сохраняется неизменной. Поэтому молекулярная масса ионизованного водорода будет 1/2 (две частицы: протон и электрон), ионизованного гелия – 4/3, натрия – 23/12 = 1,92, железа – 56/27 = 2,07. Таким образом, в звёздном веществе все химические элементы, за исключением водорода и гелия, имеют среднюю молекулярную массу, равную примерно 2.
Чем больше водорода и гелия по сравнению с более тяжёлыми элементами, тем ниже температура в центре звезды. Чисто водородное Солнце, например, имело бы температуру в центре 10 млн. градусов, гелиевое 26 млн. градусов, а состоящее целиком из более тяжёлых элементов – 40 млн. градусов.
Чтобы получить представление о структуре звезды, пользуются методом последовательных приближений. Задавая некоторое соотношение водорода, гелия и более тяжёлых элементов и зная массу звезды, вычисляют её светимость. Эту процедуру повторяют до тех пор, пока для определённой смеси вычисленная и полученная из наблюдений светимости не совпадут. Данный состав и считается близким к реальному. Оказалось, что для большинства звёзд на долю водорода и гелия приходится не менее 98% массы.
Определение химического состава и физических условий в центральных частях звёзд позволило решить вопрос об источниках звёздной энергии. При температуре 10-30 млн. градусов и наличии большого числа ядер водорода протекают термоядерные реакции, в результате образуются ядра различных химических элементов. Не все возможные ядерные реакции годятся на роль источников звёздной энергии, а только такие, которые выделяют достаточно большую энергию и могут продолжаться в течение нескольких миллиардов лет жизни звезды.
После длительных поисков было установлено, что звёзды большую часть своей жизни светят за счёт совершающихся в них преобразований четырёх ядер водорода (протонов) в одно ядро гелия. Масса четырёх протонов больше массы ядра гелия, этот избыток массы и превращается в энергию в термоядерных реакциях. Такая реакция идёт медленно и поддерживает свечение звезды на протяжении миллиардов лет.
Звёзды образуются из космических газопылевых облаков. При сжатии под действием тяготения сгустка газа его внутренняя часть постепенно разогревается. Когда температура в центре достигнет примерно миллиона градусов, начинаются ядерные реакции — образуется звезда.
Строение звёзд зависит от массы. Если звезда в несколько раз массивнее Солнца, то глубоко в её недрах происходит интенсивное перемешивание вещества (конвекция), подобно кипящей воде. Такую область называют конвективным ядром звезды. Чем больше звезда, тем большую её часть составит конвективное ядро. Остальная часть звезды сохраняет при этом равновесие. Источник энергии находится в конвективном ядре. По мере превращения водорода в гелий молекулярная масса вещества ядра возрастает, зато объём уменьшается.

_____________________________________________________________________________________________

Ядерная реакция.

Ядерная реакция — это процесс взаимодействия атомного ядра с другим ядром или элементарной частицей, сопровождающийся изменением состава и структуры ядра и выделением большого количества энергии. Впервые ядерную реакцию наблюдал Резерфорд в 1919 году, бомбардируя α-частицами ядра атомов азота, она была зафиксирована по появлению вторичных ионизирующих частиц, имеющих пробег в газе больше пробега α-частиц и идентифицированных как протоны. Впоследствии с помощью камеры Вильсона были получены фотографии этого процесса.
По механизму взаимодействия ядерные реакции делятся на два вида:
— реакции с образованием составного ядра, это двухстадийный процесс, протекающий при не очень большой кинетической энергии сталкивающихся частиц (примерно до 10 МэВ).
— прямые ядерные реакции, проходящие за ядерное время, необходимое для того, чтобы частица пересекла ядро. Главным образом такой механизм проявляется при больших энергиях бомбардирующих частиц.
Если после столкновения сохраняются исходные ядра и частицы и не рождаются новые, то реакция является упругим рассеянием в поле ядерных сил, сопровождается только перераспределением кинетической энергии и импульса частицы и ядра-мишени и называется потенциальным рассеянием.

_____________________________________________________________________________________________

Астрономы обнаружили огромную структуру размером в пять миллиардов световых лет.

Огромные размеры нашей Вселенной просто непостижимы, так что возможно представить удивление исследователей, когда они недавно обнаружили в её пределах структуру размером в пять миллиардов световых лет в диаметре. Это больше одной девятой части всей наблюдаемой Вселенной, и, безусловно, самая крупная структура из всех когда-либо обнаруженных.
На самом деле, эта загадочная структура настолько невероятная, что может разрушить наше представление о космосе.
«Если мы правы, эта структура противоречит текущим моделям Вселенной. Найти нечто столь огромное было большим сюрпризом, и мы до сих пор не совсем понимаем, как она вообще появилась», — отметил в пресс-релизе Королевского астрономического общества профессор Лайош Балаш.
Что же представляет собой эта огромная структура? Это не отдельный физический объект, а скорее скопление девяти массивных галактик, гравитационно связанных между собой так же, как и наш Млечный Путь с другими галактиками. Она была обнаружена вследствие выявления учёными кольца из девяти гамма-всплесков, произошедших на сравнительно одинаковом расстоянии от нас, составляющем порядка семи миллиардов световых лет от земли.
Гамма-всплески являются самыми яркими происходящими во Вселенной электромагнитными событиями, как известно вызванными сверхновой звездой. Их выявление обычно говорит о присутствие галактики, так что все гамма-всплески этого кольца пришли из разных галактик. Но их близкое расположение по отношению друг к другу свидетельствует о том, что эти галактики должны быть связаны между собой. Есть только один шанс из двадцати тысяч, что такое распределение гамма-всплесков случайность.
Мега-скопления такого размера невозможны, по крайней мере, с точки зрения текущих теорий. Эти теории предполагают, что Вселенная в больших масштабах должна быть относительно однородной, а это означает, что размеры структур не должны значительно отличаться. На самом деле, теоретический предел размера структур может составлять порядка 1,2 миллиарда световых лет в диаметре.
Если расчёты венгерско-американской команды верны, то эта гигантская новая структура размером более пяти миллиардов световых лет в диаметре нанесёт удар по классической модели космоса. На деле, либо исследователи заблуждаются в своих подсчётах, либо учёные должны будут кардинально пересмотреть свои теории относительно эволюции космоса.
Излишне говорить, что это открытие гамма-всплесков может стать причиной изменений фундаментальных научных представлений об астрономии. По крайней мере, это напоминает нам о том, насколько в действительности ничтожно наше представление вселенной.

 

 

Комментарии запрещены.

Мой электронный адрес

Если кто хочет со мной связаться, или есть какие то предложение, информации. Об пожеланиях, ошибках и.т.д.. Пишите, вот моя электронная почта:
alavka907@gmail.com

Свежие записи
Август 2018
Пн Вт Ср Чт Пт Сб Вс
« Июл    
 12345
6789101112
13141516171819
20212223242526
2728293031  
Архивы

Август 2018
Пн Вт Ср Чт Пт Сб Вс
« Июл    
 12345
6789101112
13141516171819
20212223242526
2728293031