PostHeaderIcon 1.Kвантовые чёрные дыры.2.Первые звёзды…3.Что было здесь до Солнечной системы?4.Шаровая молния.5.Атмосфера Марса выжигается солнечным ветром.

Kвантовые чёрные дыры.

С тех пор как почти 80 лет назад изобрели ускорители элементарных частиц, их использовали для решения таких задач, как разрушение атомов, превращение элементов, создание антивещества и частиц, ранее не наблюдавшихся в природе. Но, возможно, вскоре исследователи смогут формировать наиболее таинственные объекты Вселенной — чёрные дыры. 
Чёрные дыры обычно представляются массивными монстрами, способными заглатывать космические корабли и даже звёзды. Но дыры, которые, возможно, будут созданы в ускорителях высокой энергии (например, в Большом адронном коллайдере (БАК), приходятся дальними родственниками тем астрофизическим бегемотам. Это микроскопические объекты размером с элементарную частицу. Они не смогут разрывать звёзды, не станут господствовать в галактиках или угрожать нашей планете. Но их свойства поразительны: они должны испаряться вскоре после своего рождения, освещая датчики частиц, подобно рождественской ёлке. Таким образом, они могли бы дать ключ к пониманию связи пространства и времени и к решению вопроса о том, существуют ли другие измерения. 
Мощное сжатие.
Современная концепция чёрных дыр родилась из общей теории относительности Эйнштейна, согласно которой, если вещество сжать, его гравитация может стать настолько сильной, что очертит область пространства, из которой ничто не сможет вырваться и границу которой называют горизонтом событий чёрной дыры. Объекты могут попадать внутрь неё, но ни один не может выйти наружу. В случае, когда пространство не имеет скрытых измерений или же эти измерения меньше дыры, её размер прямо пропорционален её массе. Чтобы Солнце стало чёрной дырой, его надо сжать до радиуса в 3 км, т. е. в 4 млн. раз, а Землю — до радиуса в 9 мм, т. е. в миллиард раз. 
Следовательно, чем меньше дыра, тем сильнее должно быть сжатие. Плотность, до которой должно быть сжато вещество, обратно пропорционально квадрату массы. Для дыры с массой Солнца нужна плотность около 10^19 кг/м 3, что выше плотности атомного ядра. Вероятно, это самая высокая плотность, которую гравитационный коллапс может создать в современной Вселенной. Объекты менее массивные, чем Солнце, сопротивляются коллапсу, поскольку их удерживает от сжатия квантовая сила отталкивания между субатомными частицами. Наблюдения показывают, что самые лёгкие кандидаты в чёрные дыры имеют массу, равную шести массам Солнца. 
Но коллапс звёзд — не единственный способ рождения чёрных дыр. В начале 1970-х гг. Стивен Хокинг из Кембриджского университета и один из нас (Карр) исследовали механизм формирования дыр в ранней Вселенной. Их называют первичными чёрными дырами. По мере расширения пространства средняя плотность вещества уменьшается, следовательно, в прошлом она была намного выше и достигала ядерного уровня в первые микросекунды после Большого взрыва. Известные законы физики применимы до плотности вещества, равной так называемой плотности Планка (10^97 кг/м 3 ), при которой сила гравитации становится так велика, что квантово-механические флуктуации должны порвать ткань пространства-времени. Такой плотности было бы достаточно, чтобы создать чёрные дыры диаметром всего лишь 10^–35 м (длина Планка) и массой 10^–8 кг (масса Планка). 
Такова самая лёгкая чёрная дыра, которая может сформироваться с точки зрения стандартной теории гравитации. Она намного массивнее, но значительно меньше размером, чем элементарная частица. Постепенно, по мере уменьшения плотности космической материи, могли формироваться всё более массивные первичные чёрные дыры. Те, что имели массу меньше 10^12 кг, были бы размером меньше протона, а те, что с большей, должны были обладать параметрами обычных физических объектов. Дыры, родившиеся в эпоху, когда космическая плотность соответствовала ядерной, обладали бы массой примерно как у Солнца, т. е. были бы макроскопическими объектами. 
Высокая плотность ранней Вселенной была необходима для рождения первичных чёрных дыр, но не гарантировала их появления. Чтобы в некоторой области пространства расширение остановилось и начался коллапс, нужно, чтобы плотность чёрной дыры оказалась выше средней, так что необходимы ещё и флуктуации. Астрономы знают, что они были, по крайней мере, в крупных пространственных масштабах, иначе не образовались бы галактики и их скопления. Для формирования первичных чёрных дыр эти колебания должны быть сильными в малых масштабах, что также возможно. Но даже при отсутствии флуктуаций дыры могли формироваться спонтанно в разные моменты космологических фазовых переходов: например, когда во Вселенной закончился ранний период ускоренного расширения, известный как инфляция, или в эпоху ядерной плотности, когда такие частицы, как протоны, конденсировались из составляющих их кварков. В конце концов космологи могут наложить сильные ограничения на модели ранней Вселенной, исходя из того, что в первичных чёрных дырах заключено не слишком много вещества. 
Что упало, то пропало? 
Осознание того, что дыры могут быть маленькими, заставило Хокинга задуматься, какие квантовые эффекты могут при этом возникать. В 1974 г. он пришёл к выводу, что чёрные дыры не только заглатывают частицы, но и выплёвывают их. Хокинг предсказал, что дыра излучает тепло, как горячий уголёк, с температурой, обратно пропорциональной массе дыры. У дыры с массой Солнца температура всего миллионные доли кельвина, что очень мало для нынешней Вселенной. Но у чёрной дыры с массой 10^12 кг (это масса средней горы) температура 10^12 К, что уже достаточно для испускания как безмассовых частиц, типа фотонов, так и массивных — электронов и позитронов. 
Поскольку излучение уносит энергию, масса дыры постепенно уменьшается. Так что чёрная дыра весьма нестабильна: излучая, она сжимается, в результате чего нагревается и начинает излучать всё более энергичные частицы и при этом уменьшается всё быстрее и быстрее. Когда дыра съеживается до массы около 1000 тонн, она в течение секунды взрывается, как миллион мегатонных ядерных бомб. Время полного испарения чёрной дыры пропорционально кубу его начальной массы. У дыры с массой Солнца жизнь невообразимо длинна — 10^64 лет. Дыра с массой 10^12 кг живёт 10^10 лет — возраст современной Вселенной. Следовательно, первичные чёрные дыры такой массы сейчас должны именно заканчивать своё испарение и взрываться. А все дыры с меньшей массой должны были испариться в более ранние космологические эпохи. 
Работа Хокинга ознаменовала огромный рывок вперед, поскольку объединила три разные области физики: общую теорию относительности, квантовую механику и термодинамику. Это был также шаг к созданию квантовой теории гравитации. Даже если первичные чёрные дыры никогда не рождались, их теоретическое изучение привело к значительным открытиям в физике, в частности, выявило парадокс, возникающий при попытке согласовать общую теорию относительности с квантовой механикой. 
Согласно теории относительности, информация о том, что попало в чёрную дыру, утеряна навсегда. Однако если дыра испаряется, то что происходит с информацией, содержавшейся внутри? Согласно предположению Хокинга, чёрные дыры полностью испаряются, уничтожая при этом информацию, что противоречит принципам квантовой механики. Разрушение информации не согласуется с законом сохранения энергии и делает подобный сценарий неправдоподобным. 
Предположение о том, что от чёрных дыр что-то остаётся, также неприемлемо. В этом случае должно быть бесконечное разнообразие типов таких остатков, чтобы они смогли закодировать всю информацию о содержимом чёрной дыры. Но законы физики гласят, что частота рождения частиц пропорциональна количеству их типов. Значит, остатки чёрной дыры должны были бы рождаться в бесконечном количестве, даже при включении обычной микроволновой печки. В таком случае в природе всё стало бы неустойчивым. 
Есть и третья возможность. Положение о локальности, согласно которому события в разных точках пространства могут влиять друг на друга только после того, как свет от одного дошёл до другого, — неверно. Это до сих пор является камнем преткновения для теоретиков. 
Поиск дыр.
Для развития физики требуются экспериментальные данные, поэтому, чтобы понять природу микроскопических чёрных дыр, их следует прежде всего найти. Одна из возможностей состоит в том, что астрономы могли бы обнаружить первичные чёрные дыры с начальной массой 10^12 кг, взрывающиеся в современной Вселенной. 
Большая часть массы этих дыр должна превращаться в гамма-лучи. В 1976 г. Хокинг и Дон Педж из Калифорнийского технологического института доказали, что наблюдения фонового гамма-излучения существенно ограничивают возможное количество таких дыр. Например, в них не может быть заключена заметная доля тёмного вещества Вселенной, и их взрывы вблизи нас должны быть столь редкими, что их практически невозможно обнаружить. Однако в середине 1990-х гг. Дэвид Клайн из Калифорнийского университета в Лос-Анджелесе и его коллеги предположили, что самые короткие гамма-вспышки могут иметь отношение к первичным чёрным дырам. Считается, что более длинные вспышки могут быть связаны со взрывами или слияниями звёзд, однако короткие могут иметь и другое объяснение. Будущие астрономические наблюдения помогут исследовать заключительный этап испарения чёрной дыры. 
Ещё более захватывающая возможность — создание чёрных дыр при помощи ускорителей частиц. Когда нужно добиться высокой плотности, нет инструментов лучше, чем ускорители БАК и „Теватрон“ Национальной ускорительной лаборатории им. Ферми недалеко от Чикаго. Агрегаты разгоняют субатомные частицы, такие как протоны, до скоростей, предельно близких к скорости света. При этом частицы приобретают огромную кинетическую энергию. В БАК энергия протона достигает семи тераэлектрон-вольт (ТэВ). По формуле Эйнштейна E = mc^2 эта энергия эквивалентна массе 10^–23 кг, что в 7 тыс. раз больше массы покоя протона. Когда две такие частицы сталкиваются, их энергия концентрируется в крошечной области пространства. Поэтому можно предположить, что время от времени сталкивающиеся частицы прижимаются так тесно, что может образоваться чёрная дыра. 
Но масса 10^–23 кг намного меньше массы Планка в 10^–8 кг, которую обычная теория гравитации предлагает для самой лёгкой дыры. Этот нижний предел есть следствие квантовомеханического принципа неопределённости. Поскольку частицы ведут себя ещё и как волны, они „размазываются“ в некотором пространстве, которое уменьшается с ростом энергии: при энергиях БАК его размер 10^–19 м. Это наименьшая область, в которую можно упаковать энергию частицы. Получается плотность 10^23 кг/м 3 — довольно высокая, но недостаточная для создания чёрной дыры. Чтобы частица была как энергичной, так и компактной, она должна иметь энергию Планка, что в 10^15 раз больше энергии БАК. Несмотря на то что ускорители могли бы создать объекты, математически подобные чёрным дырам (и некоторые теоретики думают, что это уже сделано), сами дыры, похоже, лежат вне досягаемости. 
К иным измерениям.
За прошедшее десятилетие физики поняли, что нет необходимости в достижении планковской плотности. Теория струн, одна из основных соперниц квантовой теории гравитации, предсказывает, что пространство имеет более трёх измерений. Гравитация, в отличие от прочих сил, должна распространяться по всем этим измерениям и поэтому необычайно усиливаться на коротких расстояниях. В трёхмерном пространстве сила гравитации учетверяется при уменьшении расстояния между объектами вдвое. Но в девятимерном пространстве гравитация стала бы в 256 раз сильнее. Данный эффект мог бы быть существенным, если бы дополнительные измерения пространства были достаточно большими. Но возможна и более сложная конфигурация дополнительных измерений — компактификация (т. е. свертывание дополнительных измерений), которая даёт тот же эффект усиления гравитации и наиболее вероятна, если теория струн верна. 
Дополнительный рост гравитации означает, что истинный масштаб энергии, при которой законы квантовой механики и гравитации смыкаются (и может родиться чёрная дыра), окажется намного меньше, чем предполагалось. Несмотря на то что пока нет экспериментальных подтверждений такой возможности, подобная идея проливает свет на многие теоретические загадки. И если предположение верно, то плотность, необходимая для рождения чёрной дыры, может лежать в пределах возможностей БАК. 
Теоретические исследования образования чёрных дыр при высокоэнергичных столкновениях возвращают нас к работам Роджера Пенроуза из Оксфордского университета середины 1970-х гг., а также Питера Д’Иза и Филипа Норберта Пейна из Кембриджа начала 1990-х гг. Возможность существования больших дополнительных измерений может вдохнуть новую жизнь в эти исследования, что и побудило Тома Бенкса из Калифорнийского университета в Санта-Круз и Вилли Фишлера из Техасского университета приступить к обсуждению проблемы в 1999 г. 
В 2001 г. на конференции две группы учёных: один из авторов статьи Стивен Гиддингс и Скотт Томас из Стэнфордского университета, а также Савас Димопулос из Стэнфорда и Грег Ландсберг из Университета Брауна независимо описали то, что можно увидеть в коллайдерах частиц типа БАК. Не слишком сложные вычисления буквально ошеломили нас: оценки показали, что при оптимистическом сценарии, соответствующем самому низкому вероятному значению масштаба Планка, чёрные дыры могут рождаться с частотой одна дыра в секунду. Ускоритель, производящий частицы с такой частотой, физики называют фабрикой, так что БАК может стать фабрикой чёрных дыр, испарение которых не могло бы остаться незамеченным. 
Типичные столкновения дают умеренное количество энергичных частиц, но распадающаяся чёрная дыра — иное дело. Согласно Хокингу, она излучает во всех направлениях множество частиц с очень высокими энергиями. Продукты её распада включают все существующие в природе типы частиц. Несколько групп учёных детально рассчитали характерные признаки, по которым детекторы БАК могут заметить чёрные дыры. 
Водопад из чёрных дыр? 
Перспектива создания чёрных дыр на Земле может показаться безумной. Откуда мы знаем, что они благополучно распадутся, как предсказывает Хокинг, а не продолжат свой рост и в конце концов не проглотят нашу планету? На первый взгляд, весьма обоснованная тревога, особенно если учесть, что некоторые детали исходной теории Хокинга могут быть неверны: скажем, утверждение, что информация разрушается в чёрных дырах. Однако общие принципы квантовой механики указывают, что микроскопические чёрные дыры не могут быть устойчивы, а значит, они безопасны. Концентрации энергии и массы, типа элементарных частиц, постоянны, только если какой-то закон сохранения запрещает их распад. Примерами служат сохранение электрического заряда и барионного числа. Но нет такого закона, который стабилизировал бы маленькую чёрную дыру. В квантовой теории всё, что не запрещено, обязательно происходит, поэтому в соответствии со вторым законом термодинамики маленькие чёрные дыры быстро распадутся. 
Да и опыт подсказывает, что фабрика чёрных дыр не представляет опасности. Ведь столкновения с высокой энергией, такие как в БАК, уже имели место, например, в ранней Вселенной. Изредка они происходят и теперь, когда быстрые частицы космических лучей влетают в нашу атмосферу: природа сама создаёт чёрные дыры. Уже первые оценки Гиддингса и Томаса показали, что космические лучи высокой энергии (протоны или более тяжёлые атомные ядра с энергиями до 10^9 ТэВ) могут рождать в атмосфере порядка 100 чёрных дыр в год. Источник: modcos.com

_______________________________________________________________________________________________

Первые звёзды начинали свою жизнь в гигантских сверхскоплениях.

Первые звёзды во Вселенной родились несколько сотен миллионов лет спустя после Большого взрыва. Их появление ознаменовало окончание космологического периода, известного как «Тёмные Века», во время которого сформировались атомы водорода и гелий, но никаких источников излучения в видимом спектре пока не присутствовало. Не так давно, два канадских исследователя выяснили то, на что походили эти первые звёзды. Как говорят учёные, первые звёзды, возможно, группировались вместе в феноменально ярких скоплениях, в определённые периоды своего существования эти кластеры были так ярки, как сто миллионов солнц. Эта статья за авторством Александра ДеСоуза и Шантану Басу (оба из университета Западного Онтарио, Канада), опубликована в ежемесячном издании Королевского астрономического общества.
Эти учёные смогли смоделировать то, как яркость звёзд могла бы измениться по мере того, как они формировались из гравитационно коллапсирующего газового диска. Оказывается, эволюция звёзд в очень молодой Вселенной была более хаотичной, чем сейчас, в центрах протозвёздных дисков возникали огромные глыбы вещества, которые были источниками ярких вспышек, из-за чего светимость скопления существенно усиливалась, намного больше среднего значения за тот период жизни космического пространства. Выходит, что рождающиеся звёзды вышли на пик своего излучения уже в тот момент, когда они ещё были только в стадии протозвёзд, всё ещё формируясь и захватывая в себя вещество газопылевого диска. В небольшой группе, которая может состоять всего лишь из 10-20 протозвёзд, продолжающиеся взрывы вещества означали бы, что эта группа проведёт больше времени в будущем с увеличенной светимостью. Так, например, согласно компьютерному моделированию, группа из 16 протозвёзд время от времени могла увеличивать свою яркость и становиться от 1000 до 100 миллионов раз ярче нашего Солнца.
Самые первые звёзды во Вселенной прожили очень короткие жизни, но за это время смогли произвести первые тяжёлые элементы, такие как углерод и кислород, на которых сейчас построена жизнь в том виде, каком мы её знаем. Свет от этих звёзд летел к нам в течение около 13 миллиардов лет, поэтому наблюдателям с Земли они выглядят очень слабыми, а само их излучение переходит в инфракрасный спектр в результате расширения Вселенной. Именно поэтому очень трудно наблюдать первородные звёзды, но следующее поколение аппаратов, один из них Телескоп имени Джеймса Уэбба (James Webb Space Telescope, JWST), будут в состоянии найти эти звёзды. И хотя яркость одиночной первородной звезды для зеркала JWST может быть очень слабой, опубликованная статья предполагает, что группа первородных звёзд может светить как маяк в чёрном космическом пространстве и быть замеченной новыми приборами.
Комментирует доктор Басу: «Наблюдение самых первых звёзд является ключевой научной целью для JWST и для некоторых астрономов, которые изучать историю космического пространства. Если мы на верном пути, то всего через несколько лет мы сможем увидеть эти загадочные и великолепные объекты, в тот момент, когда они возникли и осветили Вселенную вокруг себя».

______________________________________________________________________________________________

Что было здесь до Солнечной системы?

Солнечная система — старое место. Ему 4,6 миллиарда лет, если быть точным. Однако Солнечная система намного моложе Вселенной, которой 13,8 миллиарда лет, плюс-минус пару сотен миллионов. Получается, Вселенная в три раза старше Солнечной системы.
Астрономы полагают, что Млечному Пути порядка 13,2 миллиарда лет; галактика почти такая же старая, как сама Вселенная. Она сформировалась, когда маленькие карликовые галактики слились воедино, образовав грандиозную спираль, которую мы знаем. 8,6 миллиарда лет Млечного Пути просто выпадают из фокуса. Прошли миллиарды лет, прежде чем Солнечная система смогла оценить положение вещей.
Наша галактика вращается раз в 220 миллионов лет, поэтому в общей сложности она проделала это примерно 60 раз. По мере вращения галактики, она засасывает материал, как гигантская космическая воронка. Облака газа и пыли собираются вместе в гигантские регионы звездообразования, массивные звезды становятся сверхновыми, затем скопления снова разрываются, отправляя звезды в Млечный Путь. Это происходит в спиральных рукавах галактики, где расположены плотные регионы звездообразования.
Итак, вернемся на 4,6 миллиарда лет назад, до того, как появилась Земля, Солнце и даже Солнечная система. Весь наш регион был газом и пылью, возможно, в одном из спиральных рукавов. На что он был похож? Космический телескоп Хаббл сделал эти снимки для вас.
Вот туманности Ориона, Орла и Тарантула. Это области звездообразования. Они представлены облаками водорода, оставшегося после Большого Взрыва, пылью, рассыпанной стареющими звездами, и засеяны тяжелыми элементами, образованными в сверхновых.
Через несколько миллионов лет регионы высокой плотности начинают формировать звезды, большие и маленькие. Давайте снова взглянем на звездообразующую туманность. Видите темные пятна? Это новообразованные звезды, окруженные газом и пылью в звездных яслях.
Вы видите множество звезд, больших и малых, похожих на наше Солнце и красных карликов. У большинства из них скоро появятся планеты — и возможно, жизнь. Где же она? Что-то не так в этой картине, где другие звезды, наши братья и сестры?
Видимо, природа не любит тесноту и уютные звездные гнезда. Туманность, которая родила Солнце, была либо поглощена звездами, либо ее сдули мощные звездные ветры более крупных звезд. В конце концов, туманность растворилась, как облако дыма от сигареты.
С самого начала наша туманность чем-то напоминала туманность Орла, через миллионы лет она стала больше похожа на Плеяды, где яркие звезды окружает зыбкая туманность. Гравитационные силы Млечного Пути разорвали членов наших солнечных яслей на структуры вроде Гиад. В конце концов, гравитационные взаимодействия разорвали и этот кластер, а наши родственные звезды были навсегда потеряны во вращающихся рукавах Млечного Пути.
Мы никогда не узнаем с точностью, что было здесь до Солнечной системы; свидетельство этому было давно утеряно в космосе. Но мы можем наблюдать другие места в Млечном Пути, которые дают нам грубое представление о том, как могло это выглядеть в разные этапы развития.

___________________________________________________________________________________________

Шаровая молния.

Шаровая молния представляет собой, так называемые сгустки плазмы, которые образуются во время грозовой погоды. Но истинная природа образования этих огненных шаров не дает возможности ученым выдвинуть здравое объяснение неожиданных и весьма пугающих эффектов, которые, как правило образовываются при возникновении шаровых молний.
Появление «дьявола».
Первое возникновение шаровой молнии было засвидетельствовано в описании одного из самых трагических происшествий, случившееся 21-го октября 1638-го года. Шаровая молния на большой скорости через окно буквально влетела в церковь деревни «Вайдкомб-Мур». Очевидцами было рассказано, что тогда еще непонятный для них искрящийся огненный шар в диаметре более двух метров каким-то образом выбил силой из церковных стен пару камней и деревянные балки.
Но на этом шар не остановился. Далее этот огненный шар напополам разломал деревянные скамейки, а также побил много окон и после этого задымил густым дымом помещение с запахом какой-то серы. Но местных жителей, которые пришли в церковь на богослужение ожидал еще один не очень приятный сюрприз. Шар на несколько секунд остановился и после разделился на две части, два огненных шара. Один, из которых, вылетел в окно, а другой растворился в помещении церкви.
После случившегося четыре человека скончалось, а около шестидесяти сельских жителей были сильно ранены. Этот случай получил название «пришествием дьявола», в котором сделали виноватыми прихожан, игравших в карты во время проповеди.
Ужас и страх.
Шаровая молния не всегда бывает сферической формы, можно встретить и овальную, каплевидную и стержневидную шаровую молнию, размер которых можно быть, как от нескольких сантиметров, так и до нескольких метров.
Зачастую наблюдают шаровую молнию небольших размеров. В природе можно встретить шаровую молнию красную, желто-красную, полностью желтую, в редких случаях белую или зеленую. Иногда шаровая молния ведет себя достаточно осмысленно, плавая в воздухе, а иногда может резко остановиться без имеющихся на то причин, а после с силой налететь на совершенно любой предмет или человека и полностью в него разрядиться.
Многие свидетели утверждают, что во время полета огненный шар издает тихий ели уловимый звук, похожий на шипение. А появление шаровой молнии, как правило, сопровождается запахом озона или серы.
Прикасаться к шаровой молнии категорически запрещено! Подобные случаи заканчивались сильнейшими ожогами и даже потерей сознания человека. Ученые утверждают, что это непонятное природное явление может даже убить человека своим электрическим разрядом.
В 1753-ом году профессор физики Георг Рихман погиб от шаровой молнии во время эксперимента с электричеством. Эта смерть потрясла всех и заставила задуматься, что же на самом деле представляет собой шаровая молния и почему она вообще возникает в природе?
Свидетели часто замечают, что при виде шаровой молнии они ощущают чувство ужаса, которое им внушает, по их мнению, шаровая молния. После встречи этого огненного шара на своем пути у очевидцев возникает чувство подавленности и сильнейшие головные боли, которые очень долго могут не проходить и никакие обезболивающие не помогают.
Опыт ученных.
Ученые пришли к выводу, у шаровой молнии нет сходств с обычной молнией, так как их можно наблюдать при ясной сухой погоде, в том числе в зимний период года.
Появилось много теоретических моделей, которые описывают само происхождение и непосредственно эволюцию шаровых молний. На сегодняшний день их число насчитывается более четырехсот.
Главное затруднение этих теорий состоит в том, что все теоретические модели воссоздаются при помощи различных экспериментов, только с некоторыми ограничениями. Если ученые начинают приравнивать искусственно созданную среду к естественной, то получается лишь некий «плазмоид», который живет в течении пары секунд, но не более того, а природная шаровая молния живет на протяжении получаса, при этом постоянно передвигается, зависает, преследует людей по совершенно непонятной причине, а также проходит сквозь стены и даже может взорваться, поэтому модель и действительность пока далеки друг от друга.
Предположение. Ученые выяснили, для того, чтобы узнать истину, нужно поймать, а также провести тщательное изучение шаровой молнии непосредственно в открытом поле, вскоре желание ученых осуществилось. 23-го июля 2012-го года в позднее вечернее время огненный шар был пойман при помощи двух спектрометров, которые были установлены непосредственно на Тибетском плато. Физики из Китая осуществлявшие изучение смогли зафиксировать в течение нескольких секунд свечение, которое издавала самая настоящая шаровая молния.
Ученые смогли сделать невероятное открытие: по сравнению со спектром простой привычной для человеческого взора молнии, в которой в основном имеются линии ионизированного азота, спектр природной шаровой молнии, как оказалось полностью пропитан прожилками железа, а также кальция и кремния. Все перечисленные элементы выступают в качестве основных составляющих почвы.
Ученые пришли к выводу, что внутри шаровой молнии идет процесс сгорания частиц почвы, которые были выброшены в воздух простым грозовым ударом.
В это же время китайскими исследователями говориться, что секрет феномена раскрыта пока преждевременно. Предположим, что в центре самой шаровой молнии сгорают частички почвы. Каким образом объясняется умение шаровых молний проходить сквозь стены или же воздействие на людей при помощи эмоций? Кстати говоря, бывали случаи, когда шаровые молнии появлялись прямо внутри подводных лодок. Как же тогда это можно объяснить?
Все это еще покрыто тайной и даже ученые не могут уже на протяжении многих лет или даже столетий объяснить феномен шаровой молнии.

_______________________________________________________________________________________________

Атмосфера Марса выжигается солнечным ветром.

Солнечная буря, миновавшая Землю, но поразившая Марс в марте 2014 года, подтвердила давние подозрения учёных о том, что солнце спалило марсианскую атмосферу, оголив таким образом планету за пару миллиардов лет.
Нынешнее открытие специалистов NASA, основанное на данных миссии MAVEN, в прошлом году достигшей Красной планеты с целью изучения эволюции атмосферы и летучих веществ, имеет огромное значение для понимания того, как Марс превратился из тёплой и влажной планеты, вероятно, пригодной для поддержания жизни и похожей на древнюю Землю, в холодную и засушливую пустыню.
Вполне вероятно, что в уничтожении атмосферы Марса повинны различные факторы. Однако результаты изучения нынешней постоянной атмосферы Красной планеты показали, что главный её враг ― родное светило.
В частности, 8 марта 2015 года выброс корональной массы – разогнанный до гигантских скоростей поток заряженных частиц из солнечной короны – поразил Марс. Аппарат MAVEN несколько раз нырял в истончившуюся атмосферу Красной планеты, чтобы изучить процесс в подробностях. Периодически он достигал высоты в 200 километров над поверхностью и делал замеры.
Планетологи установили, что, попав в солнечный шторм, ионы кислорода и CO2 из верхних слоёв атмосферы Марса выбрасываются в космос на скоростях, которые были как минимум в 10-20 раз выше обычных. То есть атмосфера Марса истончается в 10-20 раз быстрее. Исследователи установили, что каждую секунду Марс в среднем теряет 100 граммов вещества из атмосферы.
Учёные говорят, что молодой Марс, по всей видимости, потерял большую часть своей атмосферы из-за солнечных бурь, ведь тогда Солнце было гораздо активнее. Однако прежде, чем атмосфера начала истончаться, Марс защищала исчезнувшая на настоящий момент магнитосфера.
Пока неизвестно, насколько на этот процесс влияют различные дополнительные параметры – космическое излучение и другие явления, например, химические реакции газов в атмосфере.
Возможно, что в течение ближайших двух миллиардов лет Марс останется полностью без атмосферы.
Другие команды исследователей сейчас пытаются выяснить скорость сбегания изотопов аргона-38 и аргона-36. Это поможет вычислить, сколько всего газа было утеряно Марсом ранее.
В дальнейшем учёные также надеются использовать данные зонда MAVEN для того, чтобы точно восстановить историю воды Марса.
Эти первые результаты подтвердили теорию, согласно которой большая часть воды удалилась в космос, а та, что осталась, заключена во льдах под поверхностью планеты.
Научные статьи о новых данных по марсианской атмосфере были опубликованы изданиями Science и Geophysical Research Letters.

 

Комментарии запрещены.

Мой электронный адрес

Если кто хочет со мной связаться, или есть какие то предложение, информации. Об пожеланиях, ошибках и.т.д.. Пишите, вот моя электронная почта:
alavka907@gmail.com

Свежие записи
Декабрь 2018
Пн Вт Ср Чт Пт Сб Вс
« Ноя    
 12
3456789
10111213141516
17181920212223
24252627282930
31  
Архивы

Декабрь 2018
Пн Вт Ср Чт Пт Сб Вс
« Ноя    
 12
3456789
10111213141516
17181920212223
24252627282930
31