PostHeaderIcon 1.Конечна или бесконечна Вселенная?2.Могут ли ЧД светиться из-за ТМ?3.Что будет, если в Солнечной системе появится ЧД?4.MyLiFi-светодиодная лампа.5.Ученые обнаружили источник жизни в упавших на Землю метеоритах.

Конечна или бесконечна Вселенная?

Есть два варианта: либо Вселенная конечна и обладает размером, либо бесконечна и тянется вечно. Оба варианта заставляют хорошенько задуматься. Насколько велика наша Вселенная? Все зависит от ответа на вышеуказанные вопросы. Пытались астрономы понять это? Конечно пытались. Можно сказать, они одержимы поиском ответов на эти вопросы, и благодаря их поискам мы строим чувствительные космические телескопы и спутники. Астрономы вглядываются в космический микроволновый фон, реликтовое излучение, оставшееся со времен Большого Взрыва. Каким образом можно проверить эту идею, просто наблюдая за небом?
Ученые пытались найти доказательства того, что особенности на одном конце неба связаны с особенностями на другом, вроде того, как края обертки на бутылке соединяются друг с другом. До сих пор не найдено никаких доказательств, что края неба могут быть связаны.
Если говорить по-человечески, это означает, что на протяжении 13,8 миллиарда световых лет во всех направлениях Вселенная не повторяется. Свет проходит туда-сюда-обратно через все 13,8 миллиарда световых лет и только потом покидает Вселенную. Расширение Вселенной отодвинуло границы покидания светом вселенной на 47,5 миллиарда лет. Можно сказать, наша Вселенная 93 миллиарда световых лет в поперечнике. И это минимум. Возможно, это число 100 миллиардов световых лет или даже триллион. Мы не знаем. Возможно, и не узнаем. Также Вселенная вполне может быть бесконечной.
Если Вселенная действительно бесконечна, то мы получим крайне интересный результат, который заставит вас серьезно поломать голову.
Итак, представьте себе. В одном кубометре космоса (просто расставьте руки пошире) есть конечное число частиц, которое может существовать в этом регионе, и у этих частиц может быть конечное число конфигураций с учетом их спина, заряда, положения, скорости и т. д.
Тони Падилья из Numberphile подсчитал, что это число должно быть десять в десятой в семидесятой степени. Это настолько большое число, что его нельзя записать всеми карандашами во Вселенной. Если предположить, конечно, что другие формы жизни не изобрели вечные карандаши или не существует дополнительного измерения, заполненного сплошь карандашами. И все равно, наверное, карандашей не хватит.
В наблюдаемой Вселенной есть только 10^80 частиц. И этого намного меньше, чем возможных конфигураций материи в одном кубометре. Если Вселенная действительно бесконечна, то удаляясь от Земли вы в конце концов найдете место с точным дубликатом нашего кубометра космоса. И чем дальше, тем больше дубликатов.
Подумаешь, скажете вы. Одно облако водорода выглядит так же, как и другое. Но вы должны знать, что проходя по местам, которые будут выглядеть знакомыми все больше и больше, вы в конечном итоге дойдете до места, где найдете себя. А найти копию себя — это, пожалуй, самое странное, что может произойти в бесконечной Вселенной.
Продолжая, вы будете обнаруживать целые дубликаты наблюдаемой Вселенной с точными и неточными копиями вас. Что дальше? Возможно, бесконечное число дубликатов наблюдаемых Вселенной. Даже не придется приплетать мультивселенную, чтобы найти их. Это повторяющиеся Вселенные внутри нашей собственной бесконечной Вселенной.
Ответить на вопрос, конечна или бесконечна Вселенная, крайне важно, потому что любой из ответов будет умопомрачительным. Пока астрономы не знают ответа. Но не теряют надежды.

__________________________________________________________________________

Могут ли черные дыры светиться из-за темной материи? 

Темная материя, утекающая по спирали в массивную черную дыру, может излучать гамма-лучи, которые могут быть видимы с Земли, считают ученые. Темной материи во Вселенной в пять раз больше обычной, но она не излучает, не отражает и не поглощает свет, тем самым являясь полностью прозрачной или невидимой. Но если частицы темной материи вокруг темных дыр могут производить гамма-лучи (высокоэнергетический свет), эти излучения могли бы предоставить ученым новый способ изучения этого загадочного материала.
Процесс, ответственный за создание гамма-лучей, кажется несколько нелогичным, поскольку бросает вызов двум общим допущениям: ничто не может покинуть черную дыру и не бывает бесплатного сыра в мышеловке.
Джереми Шниттман — астрофизик-теоретик из Центра управления космическими полетами Годдарда NASA, и он начинает проект по изучению данных космического гамма-лучевого телескопа Ферми на предмет поиска высокоэнергетического света на границе черной дыры, который мог бы излучаться темной материей.
«Мы, на самом деле, только начали заниматься этой проблемой, — говорит Шниттман. — Как астрофизик-теоретик за свою карьеру я проанализировал не так много данных, поэтому мне придется подучиться. К счастью, меня окружают люди здесь, в Годдарде, которые являются реальными экспертами по данным Ферми».
Поиск темной материи у Шниттмана начался с компьютерной программы, которую он разрабатывал десять лет. Она моделирует в 3D пути частиц, которые проносятся в пространстве рядом с черной дырой, некоторые оказываются достаточно близко, чтобы выйти на ее орбиту или упасть в нее.
Около года назад, он решил настроить программу для моделирования частиц темной материи. В результате получилось видео, которое показывает, как субатомные частицы захватываются гравитационной тягой черной дыры и кружат вокруг региона под названием эргосфера (в которой все частицы должны вращаться в направлении вращения черной дыры). Некоторые из этих частиц сталкиваются и уничтожают друг друга (происходит аннигиляция), и это производит гамма-лучи.
Обычно эти частицы света падали бы в черную дыру, не в силах бороться с ее притяжением, если бы не так называемый процесс Пенроуза.
В 1971 году астрофизик Роджер Пенроуз показал, что если очень близко к черной дыре рождаются два фотона, существует возможность, что один убежит, а другой упадет внутрь. Эта идея противоречит идее о том, что ничто не может покинуть черную дыру, или ничто из того, что пересекает «горизонт событий» — границу, за которой гравитационное притяжение становится настолько сильным, что даже свет не может покинуть его.
Согласно принципу Пенроуза, частицы не образуются за этой точкой невозврата, но в обычных обстоятельствах у каждой частицы был бы шанс сбежать. Поэтому принцип Пенроуза как бы изменяет судьбу как минимум одной частицы, давая ей шанс на отступление.
В 2009 году группа ученых показала, что процесс Пенроуза можно применить к частицам темной материи, которые аннигилируют с образованием двух гамма-лучей. Если частицы темной материи аннигилируют рядом с поверхностью черной дыры, телескопы на Земле могли бы уловить убегающие гамма-лучи.
Модель Шниттмана показала еще больше путей, которые могут избрать частицы, включая и то, что должно рождаться еще больше гамма-лучей, которые могут покинуть черную дыру, а их энергия будет еще выше. Краткое описание результатов было опубликовано в Physical Review Letters, а более подробное — в Astrophysical Journal.
Вооружившись этими результатами, Шниттман и его коллеги сейчас ищут такой сигнал, хотя полагают, что он будет крайне тусклым по сравнению со многими другими источниками гамма-излучения. Ученые создают список целевых галактик, у которых имеется несколько гамма-лучевых источников и очень массивные черные дыры.
«Чем больше черная дыра, тем больше сигнал, — говорит Шнитттман. — Он масштабируется так, что если масса вашей черной дыры увеличивается на 10 порядков, ожидаемый сигнал усилится на 1000 порядков».
«Первые намеки на обнаружение этого эффекта, безусловно, не будут свидетельствовать о конкретном обнаружении. Но обеспечат мощный верхний предел для этого типа процесса, а также подкрепление теории о взаимодействии высокоэнергетических частиц темной материи. Это уже прогресс».
Частицы, которые покидают черную дыру посредством процесса Пенроуза, не только освобождаются, но и уходят с большей энергией, нежели имели раньше. На самом деле, конечная энергия должна быть ощутимо больше. Это, по сути, бесплатный сыр.
С момента выхода в свет работы Пенроуза, ученые показали, что убегающие частицы не только воруют энергию у своих партнеров (в основном отталкиваясь от другой частицы), но также воруют ее у вращающейся черной дыры. Каждая частица Пенроуза, которая покидает черную дыру, замедляет ее вращение на крохотную величину.
(Когда Пенроуз изначально предлагал свою идею, он писал, что это явление можно было бы использовать в продвинутом обществе как переработку мусора с выходом энергии, где мусор выступал бы частицами, падающими в черную дыру, производящими высокие энергии на выходе).
Шниттман говорит, что надеется обнаружить сигнал темной материи в данных Ферми. Правда, увидеть такой небольшой сигнал на общем фоне гамма-лучей Вселенной будет очень непросто, да и само существование сигнала стоит под вопросом: образуют ли частицы темной материи гамма-лучи при аннигиляции?
Напомним, что ученые не знают, из чего состоит темная материя, не говоря уж о том, аннигилируют ли ее частицы, как то предполагает модель Шниттмана. Поэтому, если Шниттман найдет сигнал, это будет мощным прорывом в исследовании темной материи.

__________________________________________________________________________

Что будет, если в Солнечной системе появится черная дыра?

Мысленные эксперименты — отличная штука. Мы можем представить, что будет, если исчезнет Луна, и подозреваем, что наши предки видели сверхмассивную черную дыру Млечного Пути. Догадываемся, что Луна не всегда была мертвой и холодной, а на Марсе когда-то текли реки и моря. Но мы находимся на окраине галактики, и черные дыры для нас почти что не существуют. Что, если бы одна из них образовалась в Солнечной системе? Возможно ли это в принципе?
В ночном небе начали происходить странные вещи. Вы, как и многие другие, активно следите за новостями. Выступает президент, его поддерживают астрофизики, геологи и климатологи. Он нервничает, но, отдавая дань традиции, делит новости на «плохие» и «хорошие». Хорошие новости: мы не умерли, планета не уничтожена, ее не унесло в космос и не раскрутило в гравитационном колесе. Плохие: нас ждут «весьма интересные перемены климата». Попытка выжить рядом с черной дырой похожа на бегство с «Титаника» — ради холодной смерти в океане.
Прежде, чем вы потянетесь за тревожным чемоданчиком или начнете сходить с ума: не бойтесь, это всего лишь мысленный эксперимент. Черные дыры представляют собой одно из самых страшных явлений во Вселенной. Их огромная тяжесть искривляет пространство и время — и наше понимание их природы — до предела, до одной точки. Сверхмассивные черные дыры (вроде этой) скрываются в ядрах галактик, поглощая миллионы, миллиарды звезд. Самое точное изображение черной дыры на сегодняшний день мы наблюдали в фильме «Интерстеллар». На деле же это явление во много раз страшнее.
Что будет, если недалеко от нашей Солнечной системы родится или обнаружится черная дыра?
Стоит сразу отметить, что наше Солнце никогда не станет черной дырой. Для этого нужна масса, порядком превосходящая солнечную — в 10-15 раз. Тогда случится гравитационный коллапс, и под действием силы тяжести материя буквально схлопнется в одну точку. Похожее явление лежит в основе водородных бомб и в теории холодного термоядерного синтеза, разве только гравитация играет другую роль. Более того, на роль потенциальных черных дыр не годятся и другие звезды в соседних галактиках. Большинство из них являются красными карликами и обладают массой в 8-60% нашего Солнца.
Остается два варианта: либо черная дыра спонтанно появляется в наших окрестностях, либо приходит непонятно откуда. Первое было бы возможно, если бы все страхи вокруг Большого адронного коллайдера приобрели смысл и черную дыру создали искусственным путем. Но нет, это невозможно.
Что касается второго, астрономы и астрофизики подтвердили существование около 2000 блуждающих черных дыр, но шансы того, что одна из них дойдет до нас, близятся к нулю. И как отметил писатель Дуглас Адамс:
«Космос велик. Вы просто не в состоянии осознать, насколько невероятно и умопомрачительно он велик. Я имею в виду, вам может показаться длинной дорога в аптеку, но по меркам космоса это семечки».
Впрочем, вероятность появления черной дыры — слишком интересное событие, чтобы проходить мимо.
Искривляющие пространство и время
Если посмотреть на черную дыру издалека, она будет похожа на любой другой массивный объект. Пока она прямо перед вами, она подчиняется законам классической механики и ньютоновому закону универсальной гравитации, который гласит, что притяжение между двумя объектами пропорционально их массе и уменьшается с увеличением дистанции. Другими словами, нет гравитационной разницы между R136a1, «голубым» карликом весом в 265 солнц и черной дырой с таким же весом.
Подойдите к черной дыре поближе, чтобы попасть в ее гравитационное поле, и вы столкнетесь с двумя разными наборами правил. С общей теорией относительности Эйнштейна, которая допускает существование черных дыр, искривляющих пространство и время, и экстремальной гравитацией, которая доводит это искривление до крайности.
Если вы хотите изучить черную дыру, не вылезая из космического корабля, вы обнаружите, что чем ближе вы к средоточию огромной массы, тем больше ваши двигатели будут надрываться, чтобы удержать вас на круговой орбите. Сначала небольшие импульсы ракеты смогут стабилизировать ее; но чем дальше, тем больше энергии вам придется тратить, дабы не сойти с орбиты. В итоге только безостановочная работа двигателей ракеты будет отделять вас от всепоглощающего ничто. Впрочем, в фильме «Интерстеллар» — и в этом заслуга Кристофера Нолана и Кипа Торна — эти эффекты были показаны на удивление прилично.
Как только у вас закончится топливо (или вы внезапно решите выключить двигатели), вы пересечете горизонт событий черной дыры, границу, из-за которой не может вернуться даже свет. После этого вам придется ответить за все свои грехи. Ничто не остановит неумолимое движение к сингулярности — ядру бесконечно сжатого пространства и времени, где физика, какой мы ее знаем, сворачивается в клубок и скулит.
По мере вашего продвижения время будет замедляться. Очень сильно. С вашей точки зрения ничего не изменится, но ваши друзья, наблюдающие за вашим трюком, увидят что-то вроде смазанных молний. Но только до горизонта событий — за его пределы не выходит свет, а значит, увидеть вас никто не сможет. Идеальное преступление, не так ли?
Гравитационное искривление времени — явление достаточно обыденное, но слишком слабое, чтобы его можно было заметить. На Земле, к примеру, прожив миллиард лет на уровне моря, вы будете на секунду моложе, чем ваш ровесник, проживший на вершине Эвереста. Говорят, время боится пирамид, но вам придется провести слишком много времени, прислонившись к ней щекой, чтобы ощутить замедление времени в Париже.
В черной дыре время крутится волчком. Когда мы говорим, что падения в сингулярность нельзя избежать, это означает не только неумолимое действие гравитации или искажение пространство. Время в черной дыре сжимается до такой степени, что путь в сингулярность буквально становится вашим будущим. Бегство от сингулярности будет похоже на попытку остановить время.
Допустим, у нас есть черная дыра, которая заперта в двойной системе в обнимку со звездой, которая готовится стать сверхновой. Внезапно это происходит, гравитационный гигант выстреливает в нашем направлении на скорости десятков и сотен километров в секунду. Как мы об этом узнаем?
Ответ прост: не узнаем до тех пор, пока он не столкнется с чем-либо, поскольку массивная гравитация черных дыр не выпускает даже свет. А значит, вместо того чтобы пытаться найти черный перец на черном ковре, давайте рассмотрим несколько путей, которые помогут нам напрямую определить черную дыру.
Во-первых, материя, разорванная черной дырой, будет излучать радиацию по мере вращения диска аккреции. Пространство вокруг будет светиться, как новогодняя елка во мраке ночи.
Во-вторых, искажение пространства вокруг черных дыр можно обнаружить земными методами. Например, с помощью гравитационного линзирования, предсказанного в рамках общей теории относительности Эйнштейна. Эффект проявляется вблизи массивных объектов и фиксируется астрономами. Этот же способ используют для поиска темной материи.
Но даже в идеальных условиях обнаружить черную дыру таким образом будет сложнее, чем найти блох на пятнистой собаке ночью с помощью бинокля. С повязкой на глазу. Для успешного гравитационного линзирования черная дыра должна пройти между нами и звездой. И после этого нам еще должно повезти.
Кроме того, черная дыра может дать о себе знать, если будет взаимодействовать гравитационно с небесными объектами вроде планет, звезд, астероидов и комет, что снова подводит нас к ключевому вопросу: как близко будет располагаться наша гипотетическая черная дыра, угнездившаяся по соседству?
Конечно, чем ближе, тем опаснее. По мере приближения орбиты планет и лун будут танцевать танец, как воробей, попавшийся в паутину, волоча за собой кривые орбиты и нарушая порядок, который пытаются собрать по частям еще со времен Николая Коперника.
Здесь, на Земле, изменились бы приливы, отливы и цвет неба. Если гравитация, как по заказу Жириновского, отдалит орбиту планеты дальше от Солнца, приблизит ее, сделает более эллиптической, в лучшем случае мы будем страдать от перепадов температур и странностей с временами года. В худшем случае (кроме того, чтобы стать частью черной дыры) Земля может упасть на Солнце или отправиться в дальнее плавание в пучины космоса, обрекая нас всех на холодную смерть.
Известный астрофизик Нил де Грасс Тайсон однажды емко выразил проблемы, которые возникнут, если неподалеку заведется «черная гостья»:
Что ж, раз уж мы обречены, давайте соберемся с духом и нырнем навстречу сингулярности.
В русском языке есть слово из шести букв, которое лучше всего описало бы то, что нас ждет. Давайте назовем это просто безнадегой. Ученые научились делить на ноль, и мы оказались в черной дыре. Даже Брюс Уиллис с отважным экипажем нефтяников, прошедший особую подготовку в Челябинске, не спас бы нас.
Появись черная дыра в окрестностях Нептуна, мы бы сразу почувствовали это. Ученые знают орбиту Нептуна так хорошо, что могут обнаружить даже отклонение в 1 угловую секунду (единица угловой меры). Обычная черная дыра с массой в десять солнц, летящая на скорости 300 км/c, выдала бы себя еще на расстоянии в одну десятую светового года.
И вот вам последняя порция хороших новостей: черная дыра такого размера даст нам минимум 100 лет, чтобы закончить свои земные дела. Возможно, опасность такого масштаба прекратит все земные войны или начнет одну глобальную. Возможно, человечество успеет уничтожить себя самостоятельно, как только узнает, что через сто лет — всё, капут. Пока это неважно. Если же дыра будет двигаться медленнее, фатальное время ожидания увеличится в десять раз. И вот тогда времени на строительство ковчега или сборы планетарного чемодана с вещами должно хватить.
По мере подхода к Нептуну, черная смерть стягивает газовый гигант с орбиты. Планета начинает вести себя странно: по мере удаления от нас происходит красное смещение — длина волны ее радиации, включая свет, уходит в красный спектр. Как только Нептун оказывается за черной дырой, гравитационная линза натягивается на черную сферу и обтекает ее. Когда планета появляется снова, уже перед нами, ее цвета переживают синее смещение — длина волны уходит в этот конец спектра.
Красное и синее смещение, как правило, является следствием удаления или приближения звездного объекта по отношению к нам. Похоже на эффект Допплера.
Вместе с тем, как черная дыра «кушает» планету, газ будет закручиваться в гравитационную спираль, как сахар во время создания сладкой ваты. С нашей точки зрения спираль будет вечно уходить в горизонт событий. Но свет, испущенный гибелью Нептуна, отразится от черной дыры в негативе, как солнечная корона во время затмения.
Чем ближе черная дыра будет к Земле, тем больше будет проявляться окружающий ее эффект искажения, как в кривом зеркале. Все телескопы будут видеть только пустоту в центре черной дыры.
Если наша черная смерть будет сверхмассивной черной дырой, история уже закончится — ее горизонт событий будет в пять раз больше, чем Солнечная система. Но это скучно. Давайте возьмем пример поменьше и все же постараемся разглядеть нутро этого монстра.
По ту сторону горизонта событий.
Мы движемся по кроличьей норе, зная, что ваше знакомство с ней будет очень коротким. Надеемся, что мы успеем хотя бы оценить внутренний интерьер черной дыры. К счастью для нас, но к несчастью для Солнечной системы, эта черная дыра — сверхмассивная. Мы изменили правила, но если бы мы этого не сделали, все бы уже закончилось по некоторым причинам.
В небольшой черной дыре — скажем, с массой в 30 солнц — приливные силы, вызванные увеличением тяжести, разорвали бы нас задолго до того, как мы достигли горизонта событий. Но там гравитация составляет где-то миллион земных. На то, чтобы насладиться победой — ведь мы достигли горизонта событий — у нас не будет и 0,0001 секунды.
В сверхмассивной черной дыре с массой в 5 миллионов солнц, вроде той, что расположена в центре нашей галактики, нас ждет совсем другой опыт. Любая черная дыра, вобравшая массу более 30 тысяч солнц, обладает приливными силами с гравитацией меньше одной земной на горизонте событий. У нас будет 16 секунд, чтобы осмотреться (и изменить правила игры), прежде чем мы достигнем точки сингулярности. Чем больше масса, тем больше времени.
Падение сквозь горизонт событий похоже на процесс засыпания или влюбленности: сложно определить точку отсчета, когда это произойдет, но после этого ваше чувство реальности будет совершенно иным. В черной дыре вы будете видеть звезды (свет попадает внутрь, но не наоборот), но пространство вокруг будет напоминать мыльный пузырь.
Ну а после того, как вас раздавит в ноль, вы попадете в точку бесконечной кривизны, где известному нам времени и пространству приходит конец. И узнать, как работает физика в этой точке бесконечной кривизны времени и пространства, бесконечной массы и плотности, у нас просто нет возможности.

_________________________________________________________________________

MyLiFi — светодиодная лампа для инфракрасной раздачи интернета.

Французский сартап Oledcomm представил лампу для раздачи интернета на выставке потребительской электроники CES 2018. Устройство MyLiFi обеспечивает доступ в сеть с помощью небольшого инфракрасного излучателя. Световой «роутер» подходит для любого компьютера или мобильного устройства — достаточно подсоединить к ноутбуку или смартфону специальный передатчик.
MyLiFi на первый взгляд ни чем не отличается от обычной настольной лампы с умными функциями. С помощью приложения можно регулировать степень яркости лампы и устанавливать таймер включения и отключения. 
Однако осветительный элемент в лампе не отвечает за подключение к интернету. Датчик для передачи интернет-сигнала встроен в центр лампы — это небольшой инфракрасный светодиод, который передает сеть на передатчик, а тот в свою очередь подключается к компьютеру. Световые сигналы при этом не видны человеческому глазу. 
Издание Verge испытало работу светового интернета на выставке CES 2018 в Лас-Вегасе. MacBook удалось подключить к сети за 15 секунд. Корреспонденту издания Джейкобу Кастренакесу устройство MyLiFi показалось не слишком практичным. Диапазон ограничен, поэтому поставить лампу в одной комнате и работать с сетью в другой не получится. 
Несмотря на недостатки, световой интернет — Li-Fi — работает быстрее, чем традиционный Wi-Fi во многих странах. Стартап Oledcomm обещает скорость передачи данных 23 Мбит/с, тогда как на родине компании во Франции средняя скорость Wi-Fi не превышает 10 Мбит/с. Лабораторные испытания технология Li-Fi показали, что максимально устройство способно передавать сигнал со скоростью 224 Гбит/с и скачивать HD-фильмы за несколько секунд. 
Другое преимущество Li-Fi-сети — это ее защищенность и стабильность. Cигнал Wi-Fi проходит сквозь стены, его легко можно перехватить. Со световым интернетом риск перехвата сигнала сводится к минимуму, а вероятность помех также снижается. Но как замечает Verge, лампа подключена к сети с помощью обычного Ethernet-кабеля. Его можно подключить напрямую к компьютеру, не используя при этом устройство-посредник. Ни скорость, ни защищенность данных при этом не пострадают. 
Oledcomm планирует также выпустить люстры и бра с Li-Fi-функциями. Стартап уже запустил кампанию по сбору средств на Indiegogo и планирует привлечь $50 000. Самый дешевый комплект из лампы и передатчика обойдется в $840.

_______________________________________________________________________

Ученые обнаружили источник жизни в упавших на Землю метеоритах.

Ученые из Национальной лаборатории имени Лоуренса в Беркли (США) обнаружили в двух метеоритах воду и сложные химические соединения. По мнению планетологов, находка указывает на то, что падающие на планету космические тела могли привести к зарождению жизни на Земле.
Исследователи изучили химический состав кристаллов каменной соли из метеоритов, которые упали на Землю в 1998 году. Рентгеновские снимки показали, что внутри кристаллов есть включения насыщенного солью водного раствора и органические молекулы. В том числе аминокислоты, углеводороды и другие соединения, которые играют важные биологические роли на Земле.

«Голубые кристаллы соли размером два миллиметра представляют собой хранилище органических соединений и элементов, которые необходимы для зарождения жизни», — говорит один из авторов исследования Куини Чан, отмечая, что подобное сочетание элементов на внеземном объекте зафиксировано впервые в истории.
По словам ученых, молекулы в кристаллах метеоритов были синтезированы при невыясненных условиях около 4,5 миллиарда лет назад. Предположительно, местом зарождения стала карликовая планета Церера, расположенная в поясе астероидов между Марсом и Юпитером.
Как полагают авторы исследования, их открытие демонстрирует, что примитивная жизнь могла существовать и в других местах Солнечной системы, а также перемещаться между планетами на осколках астероидов или планетоидов.

 

 

Комментарии запрещены.

Мой электронный адрес

Если кто хочет со мной связаться, или есть какие то предложение, информации. Об пожеланиях, ошибках и.т.д.. Пишите, вот моя электронная почта:
alavka907@gmail.com

Свежие записи
Август 2018
Пн Вт Ср Чт Пт Сб Вс
« Июл    
 12345
6789101112
13141516171819
20212223242526
2728293031  
Архивы

Август 2018
Пн Вт Ср Чт Пт Сб Вс
« Июл    
 12345
6789101112
13141516171819
20212223242526
2728293031