PostHeaderIcon 1.Глизе 581c.2.Сверхновая типа Ia.3.Жизнь и смерть звезд.4.Ученым впервые удалось приготовить квантовую спин-жидкость.5.Изобретена ткань…6.Кухня и что обязательно должно быть в ней.

Глизе 581c.

Экзопланета в планетной системе звезды Глизе 581. В данной системе эта планета была обнаружена второй. Из известных планет системы Глизе 581 она является третьей по порядку, считая от звезды. Расстояние до Земли — около 20 световых лет. Глизе 581с очень похожа на Землю по своим параметрам и вероятным условиям.
По своим параметрам и условиям Глизе 581c представляет большой интерес для предстоящих исследований. Это одна из очень «ценных» находок среди экзопланет. Высказываются предположения, что данная планета в дальней перспективе, теоретически, может быть важным объектом будущих космических межзвёздных миссий.
Размеры и параметры орбиты.
Данные о существовании Глизе 581c и о её массе были получены методом измерения радиальной скорости звёзд (метод Доплера). Масса планеты вычислялась по небольшим периодическим перемещениям Глизе 581 вокруг общего центра масс звезды и планет. Поскольку такое «шатание» звезды Глизе 581 является общим результатом влияния всех планет в системе, то вычисление массы Глизе 581 c зависело от присутствия других планет. Используя известную минимальную массу прежде обнаруженной Глизе 581b и принимая во внимание существование Глизе 581d, было установлено, что Глизе 581c примерно в 5 раз массивнее Земли.
Метод, применённый при обнаружении планеты, не позволяет измерить её радиус. Поэтому оценки радиуса планеты пока основаны на предположениях. Если это скалистая планета с большим металлическим ядром, то её радиус приблизительно на 50 % больше, чем радиус Земли. Если же Глизе 581c ледяная или водянистая планета-океан, то её размеры должны составлять чуть менее 2 размеров Земли. Реальная величина лежит между двумя пределами, вычисленными для моделей, описанных выше. Исходя из этого сила тяжести на поверхности экзопланеты составляет приблизительно 1,6 g.
Период обращения («год») Глизе 581c составляет 13 земных дней. Планета удалена от звезды на расстояние около 11 млн км (тогда как Земля, для сравнения, находится на расстоянии 150 млн км от Солнца). В результате, несмотря на то что звезда Глизе 581 почти в три раза меньше нашего Солнца, на небе планеты её родное солнце выглядит в 20 раз больше нашего светила.
Из-за близости к звезде Глизе 581c испытывает воздействие приливных сил и может располагаться к звезде всегда одной стороной либо вращаться в резонансе (как, например, Меркурий).
Температура и поверхность.
Зная светимость звезды Глизе 581 и учитывая расстояние от неё, можно вычислить предположительную температуру поверхности Глизе 581 c. Так, если альбедо (отражательная способность поверхности) этой планеты близко к альбедо Венеры (0,65), то температура на ней должна составлять около +3—5 °С. При земном альбедо (0,36) средняя температура экзопланеты будет около +40 °C. Фактическая температура на поверхности также зависит от свойств планетарной атмосферы. Согласно моделям считается, что у Глизе 581c есть атмосфера, но из чего она состоит и каковы её свойства, пока сказать нельзя. Ожидается, что реальные средние температуры на планете достаточно высоки, например, соответствующее вычисление для «земной» атмосферы даёт среднюю температуру в +17 °C. При этом существует возможность того, что планета при своей массе обладает мощной атмосферой с высоким содержанием метана и углекислого газа и температура на поверхности намного выше (до +100 °C) вследствие парникового эффекта, как на Венере.
Глизе 581c находится в пределах так называемой «зоны жизни», то есть на ней вполне могла бы существовать жидкая вода. Тем не менее, на данный момент нет прямых доказательств существования на ней водной поверхности. Метод спектрального анализа мог бы помочь в поисках следов водного пара в планетарной атмосфере, но только в том случае, если Глизе 581c проходит непосредственно по линии взгляда между своей звездой и нашей планетой, что на данный момент не установлено.

_______________________________________________________________________

Сверхновая типа Ia.

Сверхновая типа Ia — под категория сверхновых звёзд, которые, в свою очередь, являются под категорией катаклизмических переменных звёзд, являющаяся результатом взрыва белого карлика. Белый карлик является «остатком» звезды, которая завершила свой нормальный жизненный цикл и в которой прекратились термоядерные реакции. Тем не менее, в белых карликах при определённых условиях могут происходить дальнейшие реакции углеродно-кислородного синтеза, которые высвобождают огромное количество энергии, если его температура поднимается достаточно высоко.
Физически белые карлики с низкой скоростью вращения ограничены по своей массе пределом Чандрасекара (около 1,38 солнечных масс). Это максимальная масса, которая может быть скомпенсирована давлением вырождения электронов. После достижения этого предела белый карлик начнет сжиматься. Если белый карлик постепенно «срастается» массой со второй компонентой (аккреция), то, по общепринятой гипотезе, его ядро достигнет температуры ядерного горения углерода по мере приближения к пределу. Если белый карлик сливается с другой звездой (очень редкий случай), он на мгновение может превысить предел своей массы и начнёт разрушаться, снова поднимая свою температуру до точки воспламенения при прошлом ядерном синтезе. В течение нескольких секунд после начала ядерного синтеза со значительной частью вещества белого карлика происходит быстрая термоядерная реакция с выделением достаточного количества энергии (1 — 2 × 10^44 Дж), вызывающая взрыв новой сверхновой звезды.
Эта категория сверхновых обладает одинаковой максимальной светимостью из-за однородной массы белых карликов, которые взрываются посредством механизма аккреции. Постоянство этого значения позволяет этим взрывам использоваться в качестве стандартных измерителей (т.н. «стандартная свеча») для измерения расстояния до их галактик, поскольку визуальная звёздная величина сверхновых зависит, прежде всего, от расстояния.

__________________________________________________________________________

Жизнь и смерть звезд.

Звезды, как и люди, рождаются и умирают. Одним уготована дряхлая старость в обличье тусклого белого карлика, другим — «загробная жизнь» в виде нейтронной звезды или черной дыры. Но как определить, какие метаморфозы ждут ту или иную звезду, включая наше родное Солнце?
Астрофизика уже достаточно продвинулась в изучении эволюции звезд. Теоретические модели подкреплены надежными наблюдениями, и несмотря на наличие некоторых пробелов, общая картина жизненного цикла звезды давно известна.
Рождение.
Все начинается с молекулярного облака. Это огромные области межзвездного газа, достаточно плотные для того, чтобы в них сформировались молекулы водорода.
Затем происходит событие. Возможно, оно будет вызвано ударной волной от взорвавшейся рядом сверхновой, а может и естественной динамикой внутри молекулярного облака. Однако исход один – гравитационная неустойчивость приводит к формированию центра тяжести где-то внутри облака.
Поддаваясь соблазну гравитации, окружающее вещество начинает вращаться вокруг этого центра и наслаивается на его поверхность. Постепенно образуется уравновешенное сферическое ядро с растущей температурой и светимостью – протозвезда.
Газопылевой диск вокруг протозвезды вращается все быстрее, из-за ее растущей плотности и массы все больше частиц сталкиваются в ее недрах, температура продолжает расти.
Как только она достигает миллионов градусов, в центре протозвезды происходит первая термоядерная реакция. Два ядра водорода преодолевают кулоновский барьер и соединяются, образуя ядро гелия. Затем – другие два ядра, потом – другие… пока цепная реакция не охватит всю область, в которой температура позволяет водороду синтезировать гелий.
Энергия термоядерных реакций затем стремительно достигает поверхности светила, резко увеличивая его яркость. Так протозвезда, если обладает достаточной массой, превращается в полноценную молодую звезду.
Все протозвезды, которые разогреваются достаточно для запуска термоядерной реакции в своих недрах, затем вступают в самый продолжительный и стабильный период, занимающий 90% всего времени их существования.
Все, что с ними происходит на данном этапе, это постепенное выгорание водорода в зоне термоядерных реакций. Буквальное «прожигание жизни». Звезда очень медленно – в течение миллиардов лет – будет становиться горячее, станет расти интенсивность термоядерных реакций, как и светимость, но не более того.
Конечно, возможны события, которые ускоряют звездную эволюцию – например, близкое соседство или даже столкновение с другой звездой, однако от жизненного цикла отдельного светила это никак не зависит.
Есть и своеобразные «мертворожденные» звезды, которые не могут выйти на главную последовательность – то есть не способны справляться с внутренним давлением термоядерных реакций.
Это маломассивные (менее 0,0767 от массы Солнца) протозвезды – те самые, которые называют коричневыми карликами. Из-за недостаточного гравитационного сжатия они теряют энергии больше, чем образуется в результате синтеза водорода. Со временем термоядерные реакции в недрах этих звезд прекращаются, и все, что им остается, это продолжительное, но неизбежное остывание.
Неспокойная старость.
В отличие от людей, самая активная и интересная фаза в «жизни» массивных звезд начинается к концу их существования.
Дальнейшая эволюция каждого отдельного светила, достигшего конца главной последовательности – то есть точки, когда водорода для термоядерного синтеза в центре звезды уже не осталось – напрямую зависит от массы светила и его химического состава.
Чем меньшей массой обладает звезда на главной последовательности, тем более продолжительной будет ее «жизнь», и менее грандиозным будет ее финал. Например, звезды с массой менее половины от массы Солнца – такие, которые называются красными карликами – вообще еще ни разу не «умирали» с момента Большого взрыва. Согласно вычислениям и компьютерному моделированию, такие звезды из-за слабой интенсивности термоядерных реакций могут спокойно сжигать водород от десятков миллиардов до десятков триллионов лет, а в конце своего пути, вероятно, потухнут так же, как коричневые карлики.
Звезды со средней массой от половины до десяти масс Солнца после выгорания водорода в центре оказываются способны сжигать более тяжелые химические элементы в своем составе – сначала гелий, затем углерод, кислород и далее, насколько повезло с массой, вплоть до железа-56 (который иногда называют «пеплом термоядерного горения»).
Для таких звезд фаза, следующая за главной последовательностью, называется стадией красного гиганта. Запуск гелиевых термоядерных реакций, затем углеродных и т.д. каждый раз приводит к значительным трансформациям звезды.
В каком-то смысле это предсмертная агония. Звезда то расширяется в сотни раз и краснеет, то снова сжимается. Светимость тоже меняется – то в тысячи раз увеличивается, то снова уменьшается.
В конце этого процесса внешняя оболочка красного гиганта сбрасывается, образуя зрелищную планетарную туманность. В центре остается обнаженное ядро — белый гелиевый карлик с массой приблизительно в половину солнечной и радиусом, примерно равным радиусу Земли.
Белые карлики обладают судьбой, схожей с красными карликами – спокойное выгорание в течение миллиардов-триллионов лет, если, конечно, рядом нет звезды-компаньона, за счет которой белый карлик может увеличить свою массу. 
Экстремальная старость.
Если звезде особенно повезло с массой, и она равна примерно 12 солнечным и более, то финальные стадии ее эволюции характеризуются значительно более экстремальными событиями.
Если масса ядра красного гиганта превышает предел Чандрасекара, равный 1,44 солнечной массы, то звезда не просто сбрасывают свою оболочку в финале, но высвобождает скопившуюся энергию в мощнейшем термоядерном взрыве – сверхновой.
В сердце остатков сверхновой, разбрасывающей звездное вещество с огромной силой на многие световые годы вокруг, остается в этом случае уже не белый карлик, а сверхплотная нейтронная звезда, радиусом всего в 10-20 километров.
Однако если масса красного гиганта больше 30 солнечных масс (вернее, уже сверхгиганта), а масса его ядра превышает предел Оппенгеймера-Волкова, равный примерно 2,5-3 массам Солнца, то не образуется уже ни белый карлик, ни нейтронная звезда.
В центре останков сверхновой появляется нечто куда более впечатляющее – черная дыра, так как ядро взорвавшейся звезды сжимается настолько сильно, что коллапсировать начинают даже нейтроны, и больше уже ничто, включая свет, не может покинуть пределов новорожденной черной дыры – вернее, ее горизонта событий.
Особо массивные звезды – голубые сверхгиганты – могут миновать стадию красного сверхгиганта и также взорваться в сверхновой.
А что ждет наше Солнце?
Солнце относится к звездам средней массы, так что если вы внимательно читали предыдущую часть статьи, то уже сами можете предсказать, на каком именно пути находится наша звезда.
Однако человечество еще до превращения Солнца в красного гиганта ждет ряд астрономических потрясений. Жизнь на Земле станет невозможна уже через миллиард лет, когда интенсивность термоядерных реакций в центре Солнца станет достаточной, чтобы испарить земные океаны. Параллельно с этим условия для жизни на Марсе будут улучшаться, что в определенный момент может сделать его пригодным для обитания.
Примерно через 7 миллиардов лет Солнце разогреется достаточно, чтобы термоядерная реакция была запущена в его внешних областях. Радиус Солнца увеличится примерно в 250 раз, а светимость в 2700 раз – произойдет превращение в красного гиганта.
Из-за усилившегося солнечного ветра звезда на этом этапе потеряет до трети своей массы, однако успеет поглотить Меркурий.
Масса солнечного ядра за счет выгорания водорода вокруг него увеличится затем настолько, что произойдет так называемая гелиевая вспышка, и начнется термоядерный синтез ядер гелия в углерод и кислород. Радиус звезды значительно уменьшится, до 11 стандартных солнечных.
Однако уже 100 миллионов лет спустя реакция с гелием перейдет на внешние области звезды, и та снова увеличится до размеров, светимости и радиуса красного гиганта.
Солнечный ветер на этой стадии станет настолько сильным, что унесет внешние области звезды в космическое пространство, и они образуют обширную планетарную туманность.
А там, где было Солнце, останется белый карлик размером с Землю. Сначала крайне яркий, но с течением времени все более и более тусклый.

________________________________________________________________________

Ученым впервые удалось приготовить квантовую спин-жидкость. 

В 1987 году Пол В. Андерсон, Лауреат Нобелевской премии в области физики, выдвинул предположение, что явление высокотемпературной сверхпроводимости может быть связано с экзотическим квантовым состоянием материи, известным как квантовая спин-жидкость. В таком состоянии магнитные моменты частичек материи ведут себя подобно жидкости, однако, такая жидкость не «замерзает» даже при температуре абсолютного нуля. Подобные экзотические состояния материи считаются перспективными кандидатами для их использования в квантовых вычислительных системах, однако, до последнего момента времени ученым не удавалось получить спин-жидкость, подходящую для ее использования в различных квантовых технологиях. 
И лишь недавно, исследователям из университета Аальто, Финляндия, бразильского Центра физических исследований (CBPF), технического университета Брауншвейга и университета Нагои впервые удалось создать сверхпроводящую квантовую спин-жидкость, свойства которой максимально приближены к свойствам теоретической жидкости, предсказанным Полом Андерсоном. А создание квантовой спин-жидкости стало возможным благодаря разработанной в университете Аальто технологии управления свойствами некоторых магнитных материалов. 
Большинство из существующих высокотемпературных сверхпроводников имеют в своей основе оксид меди, в которой ионы меди формируют квадратную кристаллическую решетку, а магнитные моменты соседних ионов направлены в противоположных направлениях. Когда такая стройная кристаллическая структура нарушается путем изменения степени окисления меди, материал становится сверхпроводником. Однако, замена обычных ионов меди на ионы, имеющие электронную структуру d10 и d0, превратила всю кристаллическую структуру в квантовую спин-жидкость. 
«В будущем метод замены ионов d10/d0 может быть использован по отношению ко многим другим видам магнитных материалов, что позволит нам получить целый ряд новых материалов, обладающих уникальными квантовыми свойствами» — рассказывает Отто Мастонен, исследователь из университета Аальто. 
Для регистрации факта создания квантовой спин-жидкости и определения ее свойств ученые использовали технологию спин-спектроскопии. Эта технология основана на взаимодействии подобных электронам элементарных частиц, таких, как мюоны, с исследуемым материалом. Такой метод способен определить даже самые слабые магнитные поля, существующие в квантовом материале. 
«В дополнение к сложному и высококачественному оборудованию, данный вид исследований требует совместной работы ученых-физиков, химиков и ученых других направлений» — рассказывает профессор Маарит Карпинен. — «Но совместными усилиями такой многопрофильной команды мы сможем изучить свойства квантовых спин-жидкостей и подойти вплотную к практическому созданию так называемого топологического квантового компьютера».

_______________________________________________________________________

Изобретена ткань, охлаждающая тело не хуже кондиционера.

Одежда из такого материала почти не задерживает тепло человеческого тела и позволяет находиться в жарких помещениях без кондиционера. А 3D-печать делает эту ткань гораздо дешевле и эффективнее натуральных аналогов. 
Ученые Мэрилендского университета разработали текстиль с терморегуляцией, которая на 55% лучше, чем у хлопка. Новый материал обладает охлаждающим эффектом, и его можно напечатать на 3D-принтере. Одежда из такой ткани позволяет людям комфортно себя чувствовать даже в очень жаркую погоду и экономить на кондиционерах. Исследование опубликовано в журнале ACS Nano. 
Материал сделан из нановолоконного композита, состоящего из нитрида бора и поливинилового спирта. 3D-печать позволила выровнять нановолокна и превратить их в однородное полотно. Ткань получилась очень прочная, с очевидным охлаждающим эффектом. В отличие от обычных материалов, она не задерживает тепло человеческого тела в своих нитях, превращая одежду в «тепловую ловушку». Вместо этого материал выводит тепло наружу, и делает это в два раза эффективнее, чем хлопок. 
Эксперименты по созданию охлаждающей ткани ставят уже не первый год. Стартап Atacama получил грант на разработку материала на основе микрогидродинамики, который способен отводить влагу, всегда оставаясь практически сухим. Это помогает телу не перегреваться, но проблема в том, что работает такой способ только при высоких температурах. Есть технологии с применением дорогостоящих охлаждающих материалов, но они очень энергозатратны. Поэтому ведущий автор исследования Ху Лянбин полагает, что созданный его командой недорогой и эффективный материал сможет стать лидером на этом рынке.

__________________________________________________________________________

Кухня и что обязательно должно быть в ней.

Когда вы начинаете ремонт кухни, то всегда надо начинать его с труб. Вернее обязательно нужно провести новые трубы! Пластиковые трубы для кухни сейчас делают отличного качества и вам они прослужат очень долго если правильно их эксплуатировать. 
Затем следует подумать про потолок и стены. Какой у вас будет потолок на кухне? Вариантов сделать красивый потолок множество. Начиная от наклеивания на потолок специальных белых обоев для кухни, оформления потолков из гипсокартона, из пластиковых панелей и заканчивая натяжным потолком с красивым рисунком. 
Когда разобрались с потолком, то надо продумать чем у вас будут обклеены стены на кухне? Красивые кухонные моющие обои как самое то, что надо на кухне. Можно конечно обделать стены пластиковыми или деревянными панелями. А еще красиво будет, если вы на одной из стен на кухне сделаете красивый рисунок 3D из фотообоев! 
Ну вот и подошли мы к полу. Обычно пол на кухне выкладывают плиткой. И это правильно, так как всегда такой пол легче моется при наличии сильных въевшихся или жировых загрязнений. 
Особое внимание следует уделить кухонной мебели. Какого она будет цвета? Будет ли она сочетаться с обоями? Подойдет ли она по дизайну к кухонному светильнику, столу, стульями и другим предметам кухонного интерьера? 
А еще хочу заметить без чего не обходится ни одна кухня. Это холодильник, духовка, жарочная панель и обязательно фильтр для воды. Без чистой воды вы не сможете приготовить ни одно блюдо на кухне. Без чистой воды вы не сможете поддерживать свой водный баланс в организме. А как известно каждому человеку в день надо выпивать воды не менее 2 литров. От качества выпиваемой вами воды зависит ваше здоровье и долголетие! Вода из-под крана хоть и проходит все стадии очистки, но её не рекомендуется пить, а зачастую и готовить на такой воде тоже не самое лучшее решение. Многие предпочитают пить бутилированную воду полагая, что производители заботятся о её качестве и соблюдают все заявленные на упаковке методы её очистки и минерализации. Но в большинстве случаев это большое заблуждение и вода в пластиковых бутылках, а также вода в кулере это такая же вода какую мы пьем из под крана! Просто запакованная в красивую пластиковую тару. 
Лучшее решение в данном случае – это самим очищать воду и качественный фильтр для воды – это залог вашего здоровья и здоровья всех членов вашей семьи! Я считаю, что на каждой кухне должен быть установлен фильтр для очистки воды, где она на ваших глазах превращается в кристально чистую и полезную для питья! 
Таким фильтром для воды на мой взгляд является фильтр eSpring от компании Amway. Система очистки воды eSpring очищает воду от грязи, водорослей, песка, ржавчины, хлора, пестицидов, ртути, свинца, фенола. В общей сложности эта система удаляет из воды более 145 потенциально опасных загрязняющих веществ!!!! Кроме того на выходе из этого фильтра вода становится чистейшей и очень прозрачной!!!! За счет встроенной ультрафиолетовой лампы эта система убивает 99,99% разных микроорганизмов: бактерий и вирусов. При этом в ней сохраняются важные микроэлементы такие как кальций и магний!!!! Картридж от этой системы очистки воды необходимо менять один раз в год.

Комментарии запрещены.

Мой электронный адрес

Если кто хочет со мной связаться, или есть какие то предложение, информации. Об пожеланиях, ошибках и.т.д.. Пишите, вот моя электронная почта:
alavka907@gmail.com

Свежие записи
Ноябрь 2018
Пн Вт Ср Чт Пт Сб Вс
« Окт    
 1234
567891011
12131415161718
19202122232425
2627282930  
Архивы

Ноябрь 2018
Пн Вт Ср Чт Пт Сб Вс
« Окт    
 1234
567891011
12131415161718
19202122232425
2627282930