PostHeaderIcon 1.Новая 3D-батарейка.2.Ученые получили самый большой, истинный кварк.3.Физики нашли способ…4.Немецкие физики создали гибридную квантовую микросхему.5.Создан новый тип памяти…6.Ученые создали нанопульсары…7.Японские ученые, используя суперкомпьютер K Computer…8.Катаклизмы Сверхновых Звезд в нашей Галактике.

Новая 3D-батарейка обладает огромной емкостью и заряжается за доли секунды.

Инженеры из Университета Корнелла разработали новую структуру для типовой бытовой батарейки. От классической схемы, с разнесенным катодом и анодом, они перешли к сложнейшей трехмерной архитектуре, где электроды имеют сверхтонкую форму и постоянно переплетаются между собой. Но не пересекаются – так достигается колоссальное увеличение плотности мощности и скорости зарядки батареи при сохранении тех же габаритов. 
Внутренняя структура 3D-батарейки описывается термином «гироид» – непрерывная, бесконечно закручивающаяся в трех измерениях, но при этом нигде не пересекающая себя конструкция. Она выполнена из пленки углерода толщиной несколько нанометров, что близко к графену, но при этом им не является. На углеродный анод нанесен 10-нм слой диэлектрика, поверх которого расположена пленка серного катода. И все это залито электропроводящим полимером PEDOT. 
Хитросплетения гироида образуют огромное количество микроячеек диаметром около 40 нм, каждую из которых можно рассматривать как крошечную батарейку. Все они весьма плотно упакованы для минимизации пустот внутри батарейки, что ведет к сокращению потерь времени и энергии при прохождении электронов во время зарядки/разрядки. Растет плотность мощности батарейки, а скорость зарядки падает до считанных секунд или даже долей секунды. 
Недостаток 3D-батарейки в необратимом износе, так как при расширении серного катода из-за давления на полимерный слой от него откалываются мелкие фрагменты. Со временем это приведет к потере контакта и некоторые области внутри батарейки окажутся в изоляции. Это можно назвать деградацией батареи и команда авторов исследования в настоящее время работает над ее решением.

_________________________________________________________________________

Ученые получили самый большой, истинный кварк, совершенно новым способом.

Представьте себе, что вы печете пирог. Вы берете муку, яйца и другие необходимые продукты и у вас получается замечательный вкусный пирог. Но вообразите свое удивление, если вы вдруг выясняете, что абсолютно такой же пирог можно приготовить при помощи совершенно другого набора продуктов.Именно такая подобная курьезная ситуация произошла недавно в мире физики. В качестве пирога выступал самый большой и тяжелый из шести известных видов, ароматов кварков — истинный кварк. А продуктами для его приготовления являлись протоны и ядра атомов свинца, сталкивавшиеся в недрах Большого Адронного Коллайдера (БАК), самого большого и мощного на сегодняшний день ускорителя частиц. 
Из курса физики нам известно, что вся окружающая нас материя состоит из атомов, а ядра этих атомов состоят из протонов и нейтронов. Протоны и нейтроны, в свою очередь, состоят из кварков, при этом, вся материя состоит только из двух типов самых легких кварков, верхних и нижних. Четыре же оставшихся типа кварков появляются на свет только во время высокоэнергетических физических экспериментов или в самых экзотических местах Вселенной. Самым тяжелым из всех кварков является огромный истинный кварк, который сам по себе тяжелее атомов некоторых из химических элементов. 
Ученые-физики знали о существовании истинного кварка уже достаточно давно. Теоретическое обоснование возможности его существования было выдвинуто в 1973 году, и только в 1995 году на ускорителе Tevatron Национальной лаборатории имени Ферми, который сталкивал протоны и антипротоны, разогнанные почти до скорости света, были получены первые экспериментальные подтверждения существования истинного кварка.

__________________________________________________________________________

Физики нашли способ незаметно следить за квантовыми частицами.

Специалистам Кембриджского университета удалось то, что раньше считалось невозможным в мире квантовой физики: наблюдать за движением квантовых частиц незаметно для них. Сделать это удалось через измерение их взаимодействия с окружающей средой. 
Одной из фундаментальных предпосылок квантовой теории является то, что квантовые объекты могут существовать и как волны, и как частицы, и что они не существуют в каком-либо из этих состояний, пока не будут измерены. Это доказал Эрвин Шредингер в своем известном эксперименте с котом в коробке. 
До сих пор эта предпосылка, известная как волновая функция, существовала скорее как математический инструмент, поэтому Дэвид Арвидссон-Шукур вместе со своими коллегами, соавторами опубликованной в журнале Physical Review A статьи, решил разработать метод слежения за «тайными» движениями квантовых частиц. 
Основатели современной физики не объяснили, что делает квантовая частица, когда на нее не смотрят. Ученые Кембриджа предположили, что всякая частица, движущаяся в пространстве, будет взаимодействовать со своим окружением. Эти взаимодействия, которые кодируют информацию в частицах, они назвали «метками» частицы. Их можно расшифровать в конце эксперимента, во время измерения частицы. 
Исследователи обнаружили, что информация, зашифрованная в частицах, напрямую связана с волновой функцией, которую Шредингер постулировал сто лет назад. Ранее волновая функция считалась абстрактным инструментом вычислений для предсказаний результатов квантовых экспериментов. 
«Наш результат наводит на мысль, что волновая функция тесно связана с актуальным состоянием частиц, — говорит Арвидссон-Шукур. — Так что мы смогли исследовать запретную область квантовой механики: отметить путь движения квантовых частиц, который они проходят, пока никто на них не смотрит».
_______________________________________________________________________

Немецкие физики создали гибридную квантовую микросхему.

Ученым из Тюбингенского университета (Баден-Вюртемберг, Германия) удалось поместить атомы с магнитными свойствами на микросхему со сверхпроводящим микроволновым резонатором. Эта технология обеспечит дальнейшее развитие квантовых процессоров. 
Квантовые состояния позволяют применять особенно эффективные алгоритмы, которые по скорости и объему обработки данных далеко опережают нынешние. За счет этого протоколы квантовых коммуникаций обеспечивают не подверженный взлому канал информации, а квантовые датчики дают наиболее точные данные. 
«Чтобы применять эти новые технологии в повседневной жизни, мы должны разработать принципиально новые аппаратные компоненты, — говорит глава исследовательской группы профессор Джозеф Фортаг. — Вместо привычных бинарных единиц передачи информации, используемых в сегодняшних технологиях — битах, которые могут быть только единицей или нулем, новому оборудованию придется обрабатывать гораздо более сложные квантовые состояния». 
Нейтральные атомы идеально подходят как для хранения квантовой информации, так и для передачи сигнала. По этой причине исследователи использовали их для создания гибридной микросхемы. Они объединили нейтральные атомы со сверхпроводящими СВЧ-резонаторами. «Мы используем функциональность и преимущества обоих компонентов, — говорит ведущий автор исследования доктор Хельге Хаттерманн. — Сочетание двух систем позволило нам создать настоящий квантовый процессор со сверхпроводящими решетками, возможностью хранения информации и фотонные кубиты». 
По мнению ученых, новая система для будущих квантовых процессоров образует параллель с сегодняшними технологиями, которые также являются гибридными. Сегодня расчеты в компьютере выполняются в процессоре, информация хранится на магнитных носителях, а данные передаются через волоконно-оптические кабели через интернет. «Будущие квантовые компьютеры и их сети будут действовать по той же аналогии, требуя гибридного подхода и междисциплинарных разработок для достижения полной функциональности», — говорит Фортаг.
________________________________________________________________________

Создан новый тип памяти, информация в которой стирается при помощи света.

Некоторые из наших читателей наверняка помнят первые микросхемы перезаписываемой памяти, информация в которых стиралась ультрафиолетовым светом, освещающим чип через специальное окошко в корпусе. Нечто подобное, только на гораздо более современном уровне, удалось сделать исследователям из Фуданьского университета и Института микроэлектроники китайской Академии наук. Созданный ими новый тип памяти не только обладает превосходными электрическими и динамическими характеристиками, информация, хранимая в этой памяти, может быть стерта при помощи коротких импульсов света. Все это делает новую память идеальным кандидатом на использование в так называемых системах-на-матрице, в которых все тонкие и прозрачные компоненты электронного устройства объединяются на поверхности матрицы дисплея. 
Для создания ячеек памяти нового типа исследователи использовали молибденит (дисульфид молибдена, MoS2), полупроводниковый материала из семейства переходных дихалькогенидов. Некоторые из свойств молибденита, сформированного в виде листов, толщиной в несколько атомов, позволяют управлять его проводимостью и обеспечивают высокое значение отношения его проводимости во включенном и выключенном состоянии. 
Память, ячейки которой изготовлены из молибденита, обладают достаточно высоким быстродействием и сохраняют свою работоспособность даже при температуре около 85 градусов Цельсия. Помимо этого, такая память обладает высокой надежностью и длительным сроком службы, предварительные расчеты показали, что после 10 лет эксплуатации время хранения информации в таких ячейках составит 60 процентов от изначального значения. 
Молибденит является также светочувствительным материалом, его некоторыми свойствами можно управлять при помощи света. Зная об этом, китайские ученые провели исследования того, как свет воздействует на новые ячейки памяти и обнаружили, что даже кратковременное воздействие приводит к полному стиранию информации, записанной в ячейку. Однако, в дополнение к этому, никто не мешает использовать и обычный метод электрического стирания информации, ведь запись информации в такую ячейку производится исключительно электрическим способом. 
В своей дальнейшей работе китайские исследователи планируют разработать технологию изготовления высокоинтегрированных модулей памяти со стиранием импульсами света с определенной длиной волны и определенной длительностью. После этого ученые планируют интегрировать все это в одну единую систему-на-матрице, в которой будут использованы поликремниевые структуры, тонкопленочные транзисторы и другие компоненты, изготовленные из окиси цинка-галлия-индия (IGZO) и оксида олова-цинка (ZTO). А, в конечном счете, все это может привести к разработке технологий, используемых в производстве сверхтонких телефонов, компьютеров и других электронных устройств.
__________________________________________________________________________

Ученые создали нанопульсары, сжимая материю при помощи сверхкоротких импульсов лазерного света.

Технология сжатия импульсов лазерного света, изобретенная в конце 1980-х годов, позволяет увеличить мощность лазерных импульсов в 10 миллионов раз, соответственно укорачивая их длительность. И, используя такие сверхмощные и сверхкороткие импульсы света, исследователи из университета Осаки, Япония, разработали новый метод ускорения частиц, который получил название «направленного внутрь микропузырькового взрыва». Этот метод получает получить протоны, разогнанные до релятивистских скоростей, путем сжатия пузырьков гидридов микронных размеров при помощи сверхинтенсивного лазерного импульса. 
Группа, возглавляемая Масакацу Мураками, обнаружила удивительный феномен — возможности уплотнения материи до состояния, когда в объем, равный объему сахарного кубика, умещается материя, весом в 100 килограмм. При дальнейшем расширении и возвращении к нормальной плотности, такая материя излучает высокоэнергетические протоны. И получается, что микропузырек материи, постоянно сжимаемой светом лазера, становится источником частиц со столь огромной энергией, для разгона до которой требуются традиционные ускорители, длиной в десятки или сотни метров. 
В технологии направленного внутрь взрыва используется уникальное движение ионов, при котором ионы устремляются в одну точку пространства со скоростью, равной половине скорости света. Это явление является противоположностью Большого Взрыва, и оно кардинально отличается от всех других практических или теоретических принципов ускорения элементарных частиц. 
Отметим, что такой метод получения высокоэнергетических протонов уже сейчас можно использовать на практике во многих областях промышленности и медицины. А дальнейшие исследования явления и процессов, происходящих во время обратного взрыва, позволит ученым разгадать некоторые тайны Вселенной, к примеру, природу происхождения высокоэнергетических протонов, пронизывающих космическое пространство.
__________________________________________________________________________

Японские ученые, используя суперкомпьютер K Computer, предсказали возможность существования экзотической элементарной частицы «Di-Omega».

Основываясь на результатах сложнейшего моделирования квантовых хронодинамических (QCD) процессов, выполненного на суперкомпьютере K Computer, на одном из самых мощных в мире суперкомпьютеров, группа японских ученых из HAL QCD Collaboration, RIKEN iTHEMS и нескольких университетов предсказала возможность существования весьма и весьма экзотической элементарной частицы, дибариона, которая состоит из шести кварков, а не трех, как все другие обычные частицы. Дальнейшие исследования в данном направлении помогут ученым лучше понять принципы взаимодействия между элементарными частицами, находящимися в чрезвычайной окружающей среде, к примеру, в материи нейтронных звезд или в материи, которой была заполнена Вселенная в первые секунды после Большого Взрыва. 
Элементарные частицы, известные как барионы, к которым относятся протоны и нейтроны, состоят из связанных друг с другом трех кварков различных типов, называемых в науке «ароматом». Дибарион, по сути, является частицей, содержащей два бариона, и единственным известным людям дибарионом является ядро дейтерия. Но уже достаточно давно ученые задавались вопросом о возможности существования и других типов дибарионов. 
Японские исследователи использовали мощные теоретические и вычислительные методы для предсказания возможности существования самого необычного вида дибариона, состоящего из двух Омега-барионов, которые состоят, в свою очередь, из трех странных кварков каждый. Этот дибарион получил название Di-Omega, и его поиски японские исследователи предлагают начать со столкновений ионов тяжелых элементов, которые будут проводиться в рамках экспериментов, уже запланированных в Японии и Европе. 
Данное открытие было сделано, благодаря комбинации самых современных методов QCD-вычислений, наилучших алгоритмов моделирования и мощного суперкомпьютера. Ключевым моментом всего этого является теория, имеющая название «time-dependent HAL QCD method», математические методы, основанные на этой теории, позволяют ученым рассчитать силы взаимодействия между частицами-барионами. Вторым ключевым моментом стал новый алгоритм, который позволил существенно сократить количество вычислений при построении модели системы с большим количеством кварков в ее составе. 
Отметим, что даже с учетом использования оптимизированных алгоритмов, поиски частицы Di-Omega заняли три с половиной года. И в скором времени мощности суперкомпьютера K Computer могут потребоваться для поиска следов присутствия следов экзотических дибарионов в огромных наборах данных, полученных в результате столкновений ядер тяжелых элементов.
_________________________________________________________________________

Катаклизмы Сверхновых Звезд в нашей Галактике.

Звезды, как и люди, не бессмертны. Жизнь их конечна, но заканчивается она по-разному. Если звезда небольшая, то умирает она тихо, по-домашнему, никого из соседей особенно не беспокоя. А вот если она велика, то смерть ее происходит бурно-красиво, как гибель всего большого. Массивные звезды заканчивают взрывом, на несколько дней превращаясь в ослепительно яркую сверхновую, а затем быстро схлопываясь в крохотную нейтронную звезду или вообще в черную дыру с нулевым 
диаметром.
По официальной космологической теории, Солнце взорваться не может. Ни сейчас, ни в будущем. Весу оно немного недобрало, на наше счастье. Еще процентов сорок от сегодняшней массы — и критический барьер был бы преодолен. Но, как говорится, «чуть-чуть — не считается», а сорок процентов — это даже не чуть-чуть.
Однако на одном Солнце свет клином не сошелся. В нашей Галактике еще есть чему взрываться. И если подобный взрыв произойдет где-нибудь не очень далеко от нас, то для Земли он будет иметь весьма существенные последствия. Если, например, взорвется расположенная от нас на расстоянии 4,4 световых года альфа Центавра, то последствия этого взрыва будут таковы: на несколько недель ее яркость, видимая с Земли, увеличится настолько, что она составит примерно 1/6 яркости Солнца. Пылать в Южном полушарии она будет как днем, так и ночью. Ледовая шапка Антарктиды получит мощнейший тепловой удар. Таяние южных ледников приведет к резкому подъему уровня океана, а резкий перепад температур — к образованию многочисленных торнадо. В результате прибрежные города будут просто смыты с лица земли. Но это произойдет лишь спустя несколько суток после того, как на небе появится второе Солнце. А вот радиационный удар жители Южного полушария испытают сразу. Излучение такой мощности, какую нам даст альфа Центавра, магнитное поле Земли остановить уже не сможет. Радиация, достигнув поверхности, если и не убьет, то основательно покорежит все живущее на ней. Количество мутаций вырастет в сотни и тысячи раз, рождение здорового ребенка станет таким же чудом, каким сейчас является рождение сиамских близнецов.
Но и это еще не все. Спустя примерно три десятилетия после того, как альфа Центавра погаснет, до Солнечной системы доберется выброшенное ею облако пыли и газа. Это облако будет настолько плотным, что Солнце в нашем небе поблекнет, яркость его упадет вдвое и на планете наступит новый ледниковый период.
К счастью, альфа Центавра тоже не дотягивает до сверхновой. По массе она примерно равна Солнцу. Более реальный кандидат на эту должность — удаленный от нас на 8 световых лет Сириус. Он в два раза тяжелее нашего светила. Но и о нем беспокоиться особо не приходится. Во-первых, последствия от его взрыва будут значительно мягче. Тут обойдется уже без ощутимого теплового удара и пылевой атаки. Да и радиационный удар мы, скорее всего, выдержим. Но в космосе есть еще много звезд, пусть расположенных от нас дальше, чем Сириус, но и гораздо больших по размерам.
В 160 световых годах от Земли, в созвездии Пегаса, сидит ближайший к нам красный гигант по имени Шеат. Его диаметр примерно в 110 раз больше солнечного. Век таких звезд недолог и составляет всего несколько сотен миллионов лет (для сравнения напомним, что динозавры вымерли всего 60 млн. лет назад, а до этого они царили на планете почти 200 млн. лет). Но и Шеат — почти игрушка, если сравнить эту звезду с обитающим в созвездии Кита на расстоянии 230 световых лет от Земли красным гигантом Мирой. Этот объект по размерам превышает наше Солнце в 420 раз. Если бы Мира расположилась в центре нашей системы, то орбиты всех внутренних планет, от Меркурия до Марса включительно, располагались бы в ее чреве, а Юпитер бы вращался от нее в самой непосредственной близости. И эта звезда тоже вполне может рвануть в любой момент. Примерно с теми же последствиями, какие мы описали для альфы Центавра.
Если посмотреть еще дальше, то можно найти и более массивные звезды. На расстоянии примерно 500 световых лет таких уже три. Рас Альгете из созвездия Геркулеса перекрывает диаметр Солнца в 500 раз, Антарес из Скорпиона — в 640, а Бетельгейзе из Ориона — в 750. Диаметр последней приближается к диаметру орбиты Сатурна. Шар по размерам чуть меньший, чем вся наша Солнечная система, и готовый взорваться в любую минуту.
Канадские ученые Дейл Рассел и Тэкер Уоллес объясняют вымирание динозавров резким повышением радиации при взрыве близко от Земли сверхновой звезды. По их словам, взрыв повлек за собой резкое похолодание, а ультрафиолетовое и рентгеновское излучения в течение всего нескольких дней могли увеличиться в сотни раз. Взрыв Бетельгейзе повлечет за собой гораздо более значительные последствия. На нашем небе она на несколько месяцев превратится во вторую луну, причем луну полную и светящую как днем, так и ночью. Про мощность радиационного удара и говорить не хочется. Одно утешение: пыль от Бетельгейзе будет добираться до нас не одну тысячу лет. Так что если человечество сможет пережить саму вспышку, то к нашествию космического мусора оно успеет подготовиться.
А взрыв этот, если верить Брэду Картеру, должен произойти буквально со дня на день. Бетельгейзе, в отличие от многих других известных нам красных гигантов, уже сейчас ведет себя крайне неспокойно. Она постоянно пульсирует, то сжимаясь до размеров Рос Альгете, то вновь расширяясь до прежней величины. А когда в конце прошлого века астрономы засняли гиганта в инфракрасном диапазоне, на снимке обнаружилось, что звезду окружает оболочка газа, в 400 раз превышающая размеры Солнечной системы. По их словам, это может говорить о том, что превращение сверхгиганта в сверхновую уже началось и космического коллапса нужно ждать уже в ближайшие годы.
Есть, правда, еще версия, что Бетельгейзе уже «рванула», причем по человеческим меркам давно — несколько столетий назад. И как раз сейчас ударная волна сверхжесткого излучения от нее летит к нам. 

Комментарии запрещены.

Мой электронный адрес

Если кто хочет со мной связаться, или есть какие то предложение, информации. Об пожеланиях, ошибках и.т.д.. Пишите, вот моя электронная почта:
alavka907@gmail.com

Свежие записи
Декабрь 2018
Пн Вт Ср Чт Пт Сб Вс
« Ноя    
 12
3456789
10111213141516
17181920212223
24252627282930
31  
Архивы

Декабрь 2018
Пн Вт Ср Чт Пт Сб Вс
« Ноя    
 12
3456789
10111213141516
17181920212223
24252627282930
31